黑龙江省大庆市龙凤区2023年八年级数学第一学期期末复习检测试题含解析_第1页
黑龙江省大庆市龙凤区2023年八年级数学第一学期期末复习检测试题含解析_第2页
黑龙江省大庆市龙凤区2023年八年级数学第一学期期末复习检测试题含解析_第3页
黑龙江省大庆市龙凤区2023年八年级数学第一学期期末复习检测试题含解析_第4页
黑龙江省大庆市龙凤区2023年八年级数学第一学期期末复习检测试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

黑龙江省大庆市龙凤区2023年八年级数学第一学期期末复习检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下列运算正确的是()A.x2+x2=2x4 B.a2•a3=a5C.(﹣2a2)4=16x6 D.a6÷a2=a32.如图,已知,是边的中点,则等于()A. B. C. D.3.若分式的值为0,则的值为()A.-1或6 B.6 C.-1 D.1或-64.如图,若,,添加下列条件不能直接判定的是()A. B.C. D.5.一只因损坏而倾斜的椅子,从背后看到的形状如图,其中两组对边的平行关系没有发生变化,若º,则的大小是A.75º B.115º C.65º D.105º6.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,点D在AB边上,AD=AC,AE⊥CD,垂足为F,与BC交于点E,则BE的长是()

A.1.5 B.2.5 C. D.37.如图,下列条件中,不能证明△ABC≌△DCB是()A. B.C. D.8.如图,已知AB=AC,AF=AE,∠EAF=∠BAC,点C、D、E、F共线.则下列结论,其中正确的是()①△AFB≌△AEC;②BF=CE;③∠BFC=∠EAF;④AB=BC.A.①②③ B.①②④ C.①② D.①②③④9.如图,在中,,,,,则是()A. B.5 C. D.1010.如图,在△ABC中,AB=AC,BC=10,S△ABC=60,AD⊥BC于点D,EF垂直平分AB,交AB于点E,AC于点F,在EF上确定一点P,使PB+PD最小,则这个最小值为()A.10 B.11C.12 D.1311.某区10名学生参加市级汉字听写大赛,他们得分情况如下表:人数3421分数8029095那么这10名学生所得分数的平均数和众数分别是()A.2和1.5 B.2.5和2 C.2和2 D.2.5和8012.下列计算正确的是().A. B. C. D.二、填空题(每题4分,共24分)13.一种微生物的半径是,用小数把表示出来是_______.14.ax=5,ay=3,则ax﹣y=_____.15.如图,点P在∠AOB的平分线上,若使△AOP≌△BOP,则需添加的一个条件是________(只写一个即可,不添加辅助线).16.若x=﹣1,则x3+x2-3x+2020的值为____________.17.如图,在中,,分别垂直平分边和,交于点,.若,则______.18.当x=2+时,x2﹣4x+2020=_____.三、解答题(共78分)19.(8分)如图,和中,,,,点在边上.(1)如图1,连接,若,,求的长度;(2)如图2,将绕点逆时针旋转,旋转过程中,直线分别与直线交于点,当是等腰三角形时,直接写出的值;(3)如图3,将绕点顺时针旋转,使得点在同一条直线上,点为的中点,连接.猜想和之间的数量关系并证明.20.(8分)如图,已知△ABC的面积为16,BC=8,现将△ABC沿直线向右平移a(a<8)个单位到△DEF的位置.(1)求△ABC的BC边上的高.(2)连结AE、AD,设AB=5①求线段DF的长.②当△ADE是等腰三角形时,求a的值.21.(8分)“低碳环保,绿色出行”的概念得到广大群众的接受,越来越多的人喜欢选择骑自行车作为出行工具.小军和爸爸同时骑车去图书馆,爸爸先以150米/分的速度骑行一段时间,休息了5分钟,再以米/分的速度到达图书馆.小军始终以同一速度骑行,两人骑行的路程为(米)与时间(分钟)的关系如图.请结合图象,解答下列问题:(1)填空:______;______;______.(2)求线段所在直线的解析式.(3)若小军的速度是120米/分,求小军第二次与爸爸相遇时距图书馆的距离.22.(10分)已知:如图,和均为等腰直角三角形,,连结,,且、、三点在一直线上,,.(1)求证:;(2)求线段的长.23.(10分)综合与实践阅读以下材料:定义:两边分别相等且夹角互补的两个三角形叫做“互补三角形”.用符号语言表示为:如图①,在△ABC与△DEF中,如果AC=DE,∠C+∠E=180°,BC=EF,那么△ABC与△DEF是互补三角形.反之,“如果△ABC与△DEF是互补三角形,那么有AC=DE,∠C+∠E=180°,BC=EF”也是成立的.自主探究利用上面所学知识以及全等三角形的相关知识解决问题:(1)性质:互补三角形的面积相等如图②,已知△ABC与△DEF是互补三角形.求证:△ABC与△DEF的面积相等.证明:分别作△ABC与△DEF的边BC,EF上的高线,则∠AGC=∠DHE=90°.……(将剩余证明过程补充完整)(2)互补三角形一定不全等,请你判断该说法是否正确,并说明理由,如果不正确,请举出一个反例,画出示意图.24.(10分)如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,延长AE交BC的延长线于点F.(1)求证:△DAE≌△CFE;(2)若AB=BC+AD,求证:BE⊥AF.25.(12分)如图,已知.(1)若,,求的度数;(2)若,,求的长.26.先化简,再求值:,其中x=1.

参考答案一、选择题(每题4分,共48分)1、B【分析】直接利用积的乘方运算以及同底数幂的乘除运算法则分别化简得出答案.【详解】A、x2+x2=2x2,故此选项错误;B、a2•a3=a5,正确;C、(﹣2a2)4=16x8,故此选项错误;D、a6÷a2=a4,故此选项错误;故选:B.【点睛】此题主要考查幂的运算,解题的关键是熟知幂的运算法则.2、C【分析】等腰三角形的两个底角相等,所以∠B=∠C,又因为等腰三角形底边上的中线、高线以及顶角的平分线三线合一,所以AD⊥BC,∠1+∠B=90,所以∠1+∠C=90.【详解】∵AB=AC,∴∠B=∠C,∵D是BC边的中点,∴AD⊥BC,∴∠1+∠B=90,∴∠1+∠C=90故选C.【点睛】本题考查了等腰三角形的性质;等腰三角形底边上的中线、高线以及顶角的平分线三线合一的熟练应用是正确解答本题的关键.3、B【分析】根据分式值为零的条件可得x2−5x−6=0,且x+1≠0,再解即可.【详解】由题意得:x2−5x−6=0,且x+1≠0,解得:x=6,故选:B.【点睛】此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少.4、A【分析】根据全等三角形的判定方法:SSS、SAS、ASA、AAS、HL,结合选项进行判定,然后选择不能判定全等的选项.【详解】A、添加条件AM=CN,仅满足SSA,不能判定两个三角形全等;

B、添加条件AB=CD,可用SAS判定△ABM≌△CDN;

C、添加条件∠M=∠N,可用ASA判定△ABM≌△CDN;

D、添加条件∠A=∠NCD,可用AAS判定△ABM≌△CDN.

故选:A.【点睛】本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.5、D【详解】∵AD∥BC,∠1=75°,∴∠3=∠1=75°,∵AB∥CD,∴∠2=180°-∠3=180°-75°=105°.故选D.6、B【分析】连接DE,由勾股定理求出AB=5,由等腰三角形的性质得出CF=DF,由线段垂直平分线的性质得出CE=DE,由SSS证明△ADE≌△ACE,得出∠ADE=∠ACE=∠BDE=90°,设CE=DE=x,则BE=4-x,在Rt△BDE中,由勾股定理得出方程,解方程即可.【详解】解:连接DE,如图所示,

∵在Rt△ABC中,∠ACB=90°,AC=3,BC=4,

∴AB==5,

∵AD=AC=3,AF⊥CD,

∴DF=CF,

∴CE=DE,BD=AB-AD=2,

在△ADE和△ACE中,,

∴△ADE≌△ACE(SSS),

∴∠ADE=∠ACE=90°,

∴∠BDE=90°,

设CE=DE=x,则BE=4-x,

在Rt△BDE中,由勾股定理得:DE2+BD2=BE2,

即x2+22=(4-x)2,

解得:x=1.5;

∴CE=1.5;

∴BE=4-1.5=2.5

故选:B.【点睛】本题考查了勾股定理、全等三角形的判定与性质、等腰三角形的性质、线段垂直平分线的性质;熟练掌握勾股定理,证明三角形全等是解题的关键.7、B【分析】全等三角形的判定定理有SAS,ASA,AAS,SSS,根据以上内容逐个判断即可.【详解】A.AB=DC,AC=DB,BC=BC,符合全等三角形的判定定理“SSS”,即能推出△ABC≌△DCB,故本选项错误;B.BC=BC,,SSA不符合全等三角形的判定定理,即不能推出△ABC≌△DCB,故本选项正确;C.在△AOB和△DOC中,,∴△AOB≌△DOC(AAS),∴AB=DC,∠ABO=∠DCO,∵OB=OC,∴∠OBC=∠OCB,∴∠ABC=∠DCB,在△ABC和△DCB中,,∴△ABC≌△DCB(SAS),即能推出△ABC≌△DCB,故本选项错误;D.AB=DC,∠A=∠D,根据AAS证明△AOB≌△DOC,由此可知OA=OD,OB=OC,所以OAOC=ODOB,即AC=DB,从而再根据SSS证明△ABC≌△DCB.

,故本选项错误.故选B.【点睛】此题考查全等三角形的判定,解题关键在于掌握判定定理.8、A【分析】根据题意结合图形证明△AFB≌△AEC;利用四点共圆及全等三角形的性质问题即可解决.【详解】如图,∵∠EAF=∠BAC,∴∠BAF=∠CAE;在△AFB与△AEC中,,∴△AFB≌△AEC(SAS),∴BF=CE;∠ABF=∠ACE,∴A、F、B、C四点共圆,∴∠BFC=∠BAC=∠EAF;故①、②、③正确,④错误.故选A..【点睛】本题主要考查了全等三角形的判定及其性质的应用问题;解题的关键是准确找出图形中隐含的全等三角形,灵活运用四点共圆等几何知识来分析、判断、推理或证明.9、A【分析】由已知条件得出OB,OA的长,再根据30°所对的直角边是斜边的一半得出OD.【详解】解:∵,,,∴OB=10,∴OA==,又∵,∴在直角△AOD中,OD=OA=,故选A.【点睛】本题考查了直角三角形的性质,30°所对直角边是斜边的一半,勾股定理,关键是要得出OA的长度.10、C【分析】根据三角形的面积公式即可得到AD的长度,再由最短路径的问题可知PB+PD的最小即为AD的长.【详解】∵∴∵EF垂直平分AB∴点A,B关于直线EF对称∴∴,故选:C.【点睛】本题主要考查了最短路径问题,熟练掌握相关解题技巧及三角形的高计算方法是解决本题的关键.11、B【分析】根据众数及平均数的定义,即可得出答案.【详解】解:这组数据中2出现的次数最多,故众数是2;

平均数=(80×3+2×4+90×2+93×1)=2.3.

故选:B.【点睛】本题考查了众数及平均数的知识,掌握各部分的概念是解题关键.12、A【解析】请在此填写本题解析!A.∵,故正确;B.∵,故不正确;C.∵a3与a2不是同类项,不能合并,故不正确;D.∵,故不正确;故选A.二、填空题(每题4分,共24分)13、0.1【分析】绝对值小于1的数可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】6×10-6m=0.1m.故答案为:0.1.【点睛】本题考查了负整数指数科学记数法,对于一个绝对值小于1的非0小数,用科学记数法写成的形式,其中,n是正整数,n等于原数中第一个非0数字前面所有0的个数(包括小数点前面的0).14、【分析】将同底数幂的除法公式进行逆用即可【详解】解:∵ax=5,ay=3,∴ax﹣y=ax÷ay=5÷3=.故答案为:【点睛】本题考查了同底数幂除法公式的逆用,解答关键是根据公式将原式进行变形后解答问题.15、∠APO=∠BPO(答案不唯一)【解析】OA=OB结合已知条件可得△AOP=≌△BOP(ASA),当∠OAP=∠OBP或∠APO=∠BPO时,利用全等三角形的判定(AAS)可得△AOP≌△BOP.解:已知点P在∠AOB的平分线上∴∠AOP=∠BOP∵OP=OP,OA=OB∴△AOP=≌△BOP.故填OA=OB.16、2019【分析】将x3+x2-3x+2020进行变形然后代入求解即可.【详解】解:原式=【点睛】本题主要考查了二次根式的计算,根据原式进行变形代入求值是解题的关键.17、1【分析】依据DM、EN分别垂直平分AB和AC,即可得到AD=BD,AE=EC,进而得出∠B=∠BAD,∠C=∠EAC,依据∠BAC=110°,即可得到∠DAE的度数.【详解】解:∵∠BAC=110°,

∴∠B+∠C=180°-110°=70°,

∵DM是线段AB的垂直平分线,

∴DA=DB,

∴∠DAB=∠B,

同理,EA=EC,

∴∠EAC=∠C,

∴∠DAE=∠BAC-∠DAB-∠EAC=∠BAC-(∠B+∠C)=1°,

故答案为:1.【点睛】本题考查的是线段垂直平分线的性质、等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.18、1.【分析】将x2﹣4x+2020进行配方,化为(x﹣2)2+2016,然后根据x=2+,即可求解.【详解】由已知得:x﹣2=,∴x2﹣4x+2020=(x﹣2)2+2016=3+2016=1.故答案为1.【点睛】本题考查因式分解,学会利用配方法分解因式是本题的关键.三、解答题(共78分)19、(1);(2)22.5°、112.5°、45°;(3)AE+CF=.【分析】(1)根据勾股定理求出AB的长,可得CE,再用勾股定理可得FC的长度;(2)分别当CM=CN,MN=CN,MN=MC时,进行讨论即可;(3)连接AP,延长AE交CF于点Q,由四点共圆可知∠AEP=45°,从而推出A、E、Q共线,再由垂直平分线的判定可知AQ垂直平分CF,即得△ABF为等腰三角形,得到AP⊥BF,则△AEP为等腰直角三角形,得到AE和PE的关系,再根据EF和FC的关系得到AE、CF、BP三者的数量关系.【详解】解:(1),,,∴AB==5,∴EC=EF=3,∴FC==;(2)由题意可知△CMN中不会形成MN=MC的等腰三角形,①当CM=CN时,∠CNE=(180°-45°)=67.5°,∵∠NEC=90°,∴α=∠ACE=22.5°;②当CM=CN时,α=∠ACE,∵∠ACB=45°,∴∠CNM=∠CMN=×45°=22.5°,∵∠CEM=90°,∴∠ECM=67.5°,∴α=∠ACE=112.5°;③当CN=MN时,此时CE与BC共线,α=∠BCA=45°;综上:当是等腰三角形时,α的值为:22.5°、112.5°、45°.(3)AE+CF=连接AP,延长AE交CF于点Q,由题意可得:∠CEB=∠BAC=90°,∴A、E、C、B四点共圆,可得:∠AEB=∠ACB=45°,且∠CEQ=45°,∴∠EQC=90°,可知点A在CF的垂直平分线上,∴AC=AF=AB,∵点P是BF中点,∴AP⊥BF,∴△APE为等腰直角三角形,∴AE=,又∵△EFC为等腰直角三角形,∴CF=,∴+==AE+CF,∵BP=PF,∴AE+CF=.【点睛】本题是旋转综合题,涉及了勾股定理,等腰三角形的性质,垂直平分线的性质,旋转的性质,综合性较强,难度较大,作出辅助线是解本题的难点,是一道很好的压轴题.20、(1)4;(2)①;②或5或6【分析】(1)根据三角形的面积公式即可求出结论;(2)①作AG⊥BC,垂足为G,根据勾股定理即可求出BG,再根据勾股定理即可求出AC,最后根据平移的性质即可求出结论;②根据等腰三角形腰的情况分类讨论,根据平移的性质、勾股定理和等腰三角形的性质分别求出结论即可.【详解】解:(1)△ABC的BC边上的高为16×2÷8=4(2)①作AG⊥BC,垂足为G,由(1)知AG=4在Rt△AGB中,AB=5,AG=43在Rt△AGC中,AG=4,GC=BC-BG=5由平移可得DF=AC=②若△ADE是等腰三角形,可分以下情况Ⅰ、当AD=AE时,由题可得:AD=BE=a=AE在Rt△AGE中,EG=a-3根据勾股定理可得:解得:Ⅱ、当AD=DE时,由平移可得DE=AB=5∴a=AD=DE=5Ⅲ、当DE=AE时,则AB=AE∵AG⊥BC∴BE=2BG=6即a=6综上可得:当a=或5或6时,△ADE是等腰三角形【点睛】此题考查的是三角形的面积公式、平移的性质、勾股定理、等腰三角形的性质,掌握三角形的面积公式、平移的性质、勾股定理、等腰三角形的性质和分类讨论的数学思想是解决此题的关键.21、(1)10,15,200;(2);(3)距图书馆的距离为米【分析】(1)根据爸爸的速度和行驶的路程可求出a的值,然后用a+5即可得到b的值,利用路程除以时间即可得出m的值;(2)用待定系数法即可求线段所在直线的解析式;(3)由题意得出直线OD的解析式,与直线BC的解析式联立求出交点坐标,再用总路程减去交点纵坐标即可得出答案.【详解】(1)(分钟)(分钟)米/分故答案为:10,15,200;(2)设线段所在直线的解析式为因为点在直线BC上,代入得解得线段所在直线的解析式为(3)因为小军的速度是120米/分,所以直线OD的解析式为令,解得所以距图书馆的距离为(米)【点睛】本题主要考查一次函数的应用,能够从图象中获取有效信息是解题的关键.22、(1)详见解析;(2)【分析】(1)根据等式的基本性质可得∠DAB=∠EAC,然后根据等腰直角三角形的性质可得DA=EA,BA=CA,再利用SAS即可证出结论;(2)根据等腰直角三角形的性质和勾股定理即可求出DE,从而求出EC和DC,再根据全等三角形的性质即可求出DB,∠ADB=∠AEC,从而求出∠BDC=90°,最后根据勾股定理即可求出结论.【详解】证明:(1)∵∴∠DAE-∠BAE=∠BAC-∠BAE∴∠DAB=∠EAC∵和均为等腰直角三角形∴DA=EA,BA=CA在△ADB和△AEC中∴△ADB≌△AEC(2)∵是等腰直角三角形,∴DE=,∵∴EC=,∴DC=DE+EC=3∵△ADB≌△AEC∴DB=EC=3,∠ADB=∠AEC∵∠ADB=∠ADE+∠BDC,∠AEC=∠ADE+∠DAE=∠ADE+90°∴∠BDC=90°在Rt△BDC中,【点睛】此题考查的是等腰直角三角形的性质、全等三角形的判定及性质和勾股定理,掌握等腰直角三角形的性质、全等三角形的判定及性质和利用勾股定理解直角三角形是解决此题的关键.23、(1)见解析;(2)不正确,理由见解析【分析】(1)已知△ABC与△DEF是互补三角形,可得∠ACB+∠E=180°,AC=DE,BC=EF,证得∠ACG=∠E,证明△AGC≌△DHE,得到AG=DH,所以,即△ABC与△DEF的面积相等.(2)不正确.先画出反例图,证明△ABC≌△DEF,△ABC与△DEF是互补三角形.互补三角形一定不全等的说法错误.【详解】(1)∵△ABC与△DEF是互补三角形,∴∠ACB+∠E=180°,AC=DE,BC=EF.又∵∠ACB+∠ACG=180°,∴∠ACG=∠E,在△AGC与△DHE中,∴△AGC≌△DHE(AAS)∴AG=DH.∴即△ABC与△DEF的面积相等.(2)不正确.反例如解图,在△ABC和△DEF中,∴△ABC≌△DEF(SAS),∴△ABC与△DEF是互补三角形.∴互补三角形一定不全等的说法错误.【点睛】本题考查了全等三角形的判定及性质定理,利用AAS和SAS证明三角形全等,已知两个三角形全等,可得到对应边相等.24、(1)见解析;(2)见解析【分析】(1)根据AD∥BC可知∠ADC=∠ECF,再根据E是CD的中点可求出△ADE≌△FCE;

(2)由(1)知△ADE≌△FCE,得到AE=EF,AD=CF,由于AB=BC+AD,等量代换得到AB=BC+CF,即AB=BF,证得△ABE≌△FBE,即可得到结论.【详解】证明:(1)∵AD∥BC(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论