![河南省商丘梁园区六校联考2023年八年级数学第一学期期末联考模拟试题含解析_第1页](http://file4.renrendoc.com/view11/M03/3B/05/wKhkGWWORwGAarZeAAHBsyzlAhw807.jpg)
![河南省商丘梁园区六校联考2023年八年级数学第一学期期末联考模拟试题含解析_第2页](http://file4.renrendoc.com/view11/M03/3B/05/wKhkGWWORwGAarZeAAHBsyzlAhw8072.jpg)
![河南省商丘梁园区六校联考2023年八年级数学第一学期期末联考模拟试题含解析_第3页](http://file4.renrendoc.com/view11/M03/3B/05/wKhkGWWORwGAarZeAAHBsyzlAhw8073.jpg)
![河南省商丘梁园区六校联考2023年八年级数学第一学期期末联考模拟试题含解析_第4页](http://file4.renrendoc.com/view11/M03/3B/05/wKhkGWWORwGAarZeAAHBsyzlAhw8074.jpg)
![河南省商丘梁园区六校联考2023年八年级数学第一学期期末联考模拟试题含解析_第5页](http://file4.renrendoc.com/view11/M03/3B/05/wKhkGWWORwGAarZeAAHBsyzlAhw8075.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省商丘梁园区六校联考2023年八年级数学第一学期期末联考模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.若是关于的完全平方式,则的值为()A.7 B.-1 C.8或-8 D.7或-12.满足-2<x≤1的数在数轴上表示为()A. B. C. D.3.下列数据的方差最大的是()A.3,3,6,9,9 B.4,5,6,7,8 C.5,6,6,6,7 D.6,6,6,6,64.甲、乙两车从城出发匀速行驶至城.在整个行驶过程中,甲、乙两车离城的距离(千米)与甲车行驶的时间(小时)之间的函数关系如图所示.则下列结论:①两城相距千米;②乙车比甲车晚出发小时,却早到小时;③乙车出发后小时追上甲车;④当甲、乙两车相距千米时,其中正确的结论有()A.个 B.个 C.个 D.个5.如图,下列图案是我国几家银行的标志,其中轴对称图形有()A.1个 B.2个 C.3个 D.4个6.如图,点坐标为,点在直线上运动,当线段最短时,点的坐标为()A. B. C. D.7.如图,已知△ABC与△ADE都是以A为直角顶点的等腰直角三角形,△ADE绕顶点A旋转,连接BD,CE.以下四个结论:①BD=CE;②∠AEC+∠DBC=45°;③BD⊥CE;④∠BAE+∠DAC=180°.其中结论正确的个数是()A.1 B.2 C.3 D.48.等边三角形的两个内角的平分线所夹的钝角的度数为()A. B. C. D.9.下列线段长能构成三角形的是()A.3、4、7 B.2、3、6 C.5、6、11 D.4、7、1010.如图,BE=CF,AB∥DE,添加下列哪个条件不能证明△ABC≌△DEF的是(
)A.AB=DE B.∠A=D C.AC=DF D.AC∥DF二、填空题(每小题3分,共24分)11.已知空气的密度是0.001239,用科学记数法表示为________12.如图,在中,,,以原点为圆心,为半径画弧,交数轴于点,则点表示的实数是_____.13.如图,中,是的中点,则________________度.14.已知实数,0.16,,,,,其中为无理数的是___.15.如图AB∥CD,∠B=72°,EF平分∠BEC,EG⊥EF,则∠DEG=______°.16.已知:x2+16x﹣k是完全平方式,则k=_____.17.因式分解:3x3﹣12x=_____.18.如图,已知中,,的垂直平分线交于点,若,则的周长=__________.三、解答题(共66分)19.(10分)某电器公司计划装运甲、乙两种家电到农村销售(规定每辆汽车按规定满载,且每辆汽车只能装同一种家电),已知每辆汽车可装运甲种家电20台,乙种家电30台.(1)若用8辆汽车装运甲、乙两种家电共190台到A地销售,问装运甲、乙两种家电的汽车各有多少辆?(2)如果每台甲种家电的利润是180元,每台乙种家电的利润是300元,那么该公司售完这190台家电后的总利润是多少?20.(6分)如图所示,在平面直角坐标系中,已知、、.在平面直角坐标系中画出,则的面积是______;若点D与点C关于y轴对称,则点D的坐标为______;已知P为x轴上一点,若的面积为4,求点P的坐标.21.(6分)如图1,平面直角坐标系中,直线与轴、轴分别交于点,,直线经过点,并与轴交于点.(1)求,两点的坐标及的值;(2)如图2,动点从原点出发,以每秒个单位长度的速度沿轴正方向运动.过点作轴的垂线,分别交直线,于点,.设点运动的时间为.①点的坐标为______.点的坐标为_______;(均用含的式子表示)②请从下面A、B两题中任选一题作答我选择________题.A.当点在线段上时,探究是否存在某一时刻,使?若存在,求出此时的面积;若不存在说明理由.B.点是线段上一点.当点在射线上时,探究是否存在某一时刻使?若存在、求出此时的值,并直接写出此时为等腰三角形时点的坐标;若不存在,说明理由.22.(8分)某公司决定从厂家购进甲、乙两种不同型号的显示器共50台,购进显示器的总金额不超过77000元,已知甲、乙型号的显示器价格分别为1000元/台、2000元/台.(1)求该公司至少购买甲型显示器多少台?(2)若要求甲型显示器的台数不超过乙型显示器的台数,问有哪些购买方案?23.(8分)有一块形状为四边形的钢板,量得它的各边长度为AB=9cm,BC=12cm,CD=17cm,DA=8cm,∠B=90°,求这块钢板的面积.24.(8分)已知x、y是实数,且x=++1,求9x﹣2y的值.25.(10分)如图,在平面直角坐标系中,点,点.(1)①画出线段关于轴对称的线段;②在轴上找一点使的值最小(保留作图痕迹);(2)按下列步骤,用不带刻度的直尺在线段找一点使.①在图中取点,使得,且,则点的坐标为___________;②连接交于点,则点即为所求.26.(10分)计算(1)(2)分解因式:
参考答案一、选择题(每小题3分,共30分)1、D【分析】利用完全平方公式的结构特征判断即可确定出m的值.【详解】∵x2−2(m−3)x+16是关于x的完全平方式,∴m−3=±4,解得:m=7或−1,故选:D.【点睛】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.2、B【分析】-2<x≤1表示不等式x>﹣2和不等式x≤1的公共部分。实心圆点包括该点,空心圆圈不包括该点,大于向右小于向左.即可求解.【详解】∵x>﹣2,∴表示﹣2的点是空心点折线的方向是向右的.又∵x≤1,∴表示1的点是实心点折线的方向是向左的.∴数轴表示的解集为:;故答案为B.【点睛】此题主要考查了在数轴上表示不等式组的解集.解题的关键是掌握在数轴上表示不等式组的解集的方法.3、A【分析】先计算出各组数据的平均数,再根据方差公式计算出各方差即可得出答案.【详解】解:A、这组数据的平均数为×(3+3+6+9+9)=6,方差为×[(3-6)2×2+(6-6)2+(9-6)2×2]=7.2;B、这组数据的平均数为×(4+5+6+7+8)=6,方差为×[(4-6)2+(5-6)2+(6-6)2+(7-6)2+(8-6)2]=2;C、这组数据的平均数为×(5+6+6+6+7)=6,方差为×[(5-6)2+(6-6)2×3+(7-6)2]=0.4;D、这组数据的平均数为×(6+6+6+6+6)=6,方差为×(6-6)2×5=0;故选A.【点睛】本题主要考查方差,熟练掌握方差的计算方法是解题的关键.4、B【分析】观察图象可判断①②,由图象所给数据可求得甲、乙两车离开A城的距离y与时间t的关系式,可求得两函数图象的交点,可判断③,再令两函数解析式的差为50,可求得t,可判断④,可得出答案.【详解】解:由图象可知A、B两城市之间的距离为300km,甲行驶的时间为5小时,而乙是在甲出发1小时后出发的,且乙用时3小时,即比甲早到1小时,故①②都正确;
设甲车离开A城的距离y与t的关系式为y甲=kt,
把(5,300)代入可求得k=60,
∴y甲=60t,
设乙车离开A城的距离y与t的关系式为y乙=mt+n,
把(1,0)和(4,300)代入可得,解得,∴y乙=100t-100,
令y甲=y乙可得:60t=100t-100,解得t=2.5,
即甲、乙两直线的交点横坐标为t=2.5,
此时乙出发时间为1.5小时,即乙车出发1.5小时后追上甲车,故③错误;
令|y甲-y乙|=50,可得|60t-100t+100|=50,即|100-40t|=50,
当100-40t=50时,可解得t=,当100-40t=-50时,可解得t=,令y甲=50,解得t=,令y甲=250,解得t=,∴当t=时,y甲=50,此时乙还没出发,此时相距50千米,
当t=时,乙在B城,此时相距50千米,
综上可知当t的值为或或或时,两车相距50千米,故④错误;
综上可知正确的有①②共两个,
故选:B.【点睛】本题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键,学会构建一次函数,利用方程组求两个函数的交点坐标,属于中考常考题型.5、C【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此可知只有第三个图形不是轴对称图形.【详解】解:根据轴对称图形的定义:第一个图形和第二个图形有2条对称轴,是轴对称图形,符合题意;第三个图形找不到对称轴,则不是轴对称图形,不符合题意.第四个图形有1条对称轴,是轴对称图形,符合题意;轴对称图形共有3个.故选:C.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.6、A【分析】当AB与直线y=-x垂直时,AB最短,则△OAB是等腰直角三角形,作B如图,点坐标为,点在直线上运动,当线段最短时,点的坐标为BC⊥x轴即可求得OD,BD的长,从而求得B的坐标.【详解】解析:过点作垂直于直线的垂线,点在直线上运动,,为等腰直角三角形,过作垂直轴垂足为,则点为的中点,则,作图可知在轴下方,轴的右方.横坐标为正,纵坐标为负.所以当线段最短时,点的坐标为.故选A.【点睛】本题考查了正比例函数的性质,等腰三角形的性质的综合应用,正确根据垂线段最短确定:当AB与直线y=-x垂直时,AB最短是关键.7、C【分析】①由条件证明△ABD≌△ACE,就可以得到结论;②由条件知∠ABC=∠ABD+∠DBC=45°,由∠ABD=∠ACE就可以得出结论;③由△ABD≌△ACE就可以得出∠ABD=∠ACE,就可以得出∠CFG=90°,进而得出结论;④由∠BAE+∠EAD+∠DAC+∠BAC=360,即可得出结论.【详解】①∵∠BAC=∠DAE=90°,
∴∠BAC+∠DAC=∠DAE+∠DAC,
即∠BAD=∠CAE.
在△ABD和△ACE中,,
∴△ABD≌△ACE(SAS),
∴BD=CE,∴①正确;
②∵△ABD≌△ACE,∴∠ABD=∠ACE,∵∠BAC=90°,AB=AC,
∴∠ABC=45°,
∴∠ABD+∠DBC=45°.
∴∠ACE+∠DBC=45°,而∠ACE与∠AEC不一定相等,∴②错误;③设BD与CE、AC的交点分别为F、G,∵△ABD≌△ACE,∴∠ABD=∠ACE,∠AGB=∠FGC,
∵∠CAB=90°,
∴∠BAG=∠CFG=90°,
∴BD⊥CE,∴③正确;④∵∠BAE+∠EAD+∠DAC+∠BAC=360,∠EAD=∠BAC=90°,
∴∠BAE+∠DAC=360-90°-90°=180,∴④正确;综上,①③④正确,共3个.故选:C.【点睛】本题考查了等腰直角三角形的性质、旋转变换的性质、全等三角形的判定和性质,解题的关键是灵活运用这些知识解决问题.8、D【分析】画出图形,根据内角平分线的定义求出∠OBC和∠OCB的度数,再根据三角形的内角和定理求出∠BOC的度数.【详解】如图:∵∠ABC=∠ACB=,BO、CO是两个内角的平分线,∴∠OBC=∠OCB=30,∴在△OBC中,∠BOC=180−30−30=.故选D.【点睛】本题考查了等边三角形的性质,知道等边三角形的每个内角是60度是解题的关键.9、D【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边即可求解.【详解】解:A、3+4=7,不能构成三角形;B、2+3<6,不能构成三角形;C、5+6=11,不能构成三角形;D、4+7>10,能构成三角形.故选:D.【点睛】本题考查了能够组成三角形三边的条件,其实用两条较短的线段相加,如果大于最长的那条就能够组成三角形.10、C【分析】由已知条件得到相应边相等和对应角相等.再根据全等三角形的判定定理“AAS”,“SAS”,“ASA”依次判断.【详解】∵BE=CF,∴BE+EC=CF+EC,∴BC=EF,∵AB//DE,∴∠B=∠DEF,其中BC是∠B的边,EF是∠DEF的边,根据“SAS”可以添加边“AB=DE”,故A可以,故A不符合题意;根据“AAS”可以添加角“∠A=∠D”,故A可以,故B不符合题意;根据“ASA”可以添加角“∠ACB=∠DFE”,故D可以,故D不符合题意;故答案为C.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.二、填空题(每小题3分,共24分)11、1.239×10-3.【分析】绝对值小于1的数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.001239=1.239×10-3故答案为:1.239×10-3.【点睛】本题考查了科学记数法的表示,熟练掌握n的值是解题的关键.12、-【分析】根据勾股定理,可得OA的长,根据半径相等,可得答案.【详解】由勾股定理,得OA==,由半径相等,得OP=OA=,∴点表示的实数是-故答案为:-.【点睛】本题考查了数轴,利用了实数与数轴的一一对应关系.13、62【分析】根据直角三角形斜边上的中线等于斜边的一半可知,根据等腰三角形的性质可知,进而即可得解.【详解】∵在中,D是的中点∴∴是等腰三角形∴∵∴∵∴故答案为:62.【点睛】本题主要考查了直角三角形斜边上中线的性质,以及等腰三角形性质等相关知识,熟练掌握三角形的相关知识是解决本题的关键.14、【分析】根据无理数概念结合有理数概念逐一进行分析即可.【详解】是有理数,0.16是有理数,是无理数,是无理数,=5是有理数,是无理数,所有无理数是,,,故答案为,,.【点睛】本题主要考查了无理数定义.初中范围内学习的无理数有三类:①π类,如2π,3π等;②开方开不尽的数,如,等;③虽有规律但是无限不循环的数,如0.1010010001…,等.注意解答此类问题时,常常要结合有理数概念来求解.15、1【解析】直接利用平行线的性质得出∠BEC=108°,再利用角平分线的定义得出答案.【详解】解:∵AB∥CD,∠B=72°,∴∠BEC=108°,∵EF平分∠BEC,∴∠BEF=∠CEF=54°,∵∠GEF=90°,∴∠GED=90°﹣∠FEC=1°.故答案为:1.【点睛】此题主要考查了平行线的性质以及垂线的定义,正确得出∠BEC的度数是解题关键.16、﹣1【解析】利用完全平方公式的结构特征判断即可得到k的值.【详解】解:∵x2+16x﹣k是完全平方式,∴﹣k=1,∴k=﹣1.故答案为﹣1【点睛】本题考查完全平方式,熟练掌握完全平方公式的特征是解题关键.17、3x(x+2)(x﹣2)【分析】先提公因式3x,然后利用平方差公式进行分解即可.【详解】3x3﹣12x=3x(x2﹣4)=3x(x+2)(x﹣2),故答案为3x(x+2)(x﹣2).【点睛】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.18、1【分析】根据线段垂直平分线的性质得到DA=DB,根据三角形的周长公式计算即可.【详解】∵DE是AB的垂直平分线,
∴DA=DB,
∴△BCD的周长=BD+CD+BC=AD+CD+BC=AC+BC=6+4=1,
故答案为:1.【点睛】本题考查的是线段垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.三、解答题(共66分)19、(1)装运甲种家电的汽车有5辆,装运乙种家电的汽车有3辆;(2)该公司售完这190台家电后的总利润是45000元.【分析】(1)设装运甲种家电的汽车有x辆,装运乙种家电的汽车有y辆,根据用8辆汽车装运甲、乙两种家电共190台即可求得x、y的值;
(2)根据总利润=甲种家电的利润+乙种家电的利润,列出算式计算即可求解.【详解】解:(1)设装运甲种家电的汽车有x辆,装运乙种家电的汽车有y辆,依题意有,解得.故装运甲种家电的汽车有5辆,装运乙种家电的汽车有3辆;(2)20×5×180+30×3×300=45000(元).答:该公司售完这190台家电后的总利润是45000元.【点睛】本题考查二元一次方程组的应用,利润的计算,本题中解关于x、y的方程组是解题关键.20、(1)图详见解析,4;(2)
;(3)P点坐标为:或.【分析】直接利用所在矩形面积减去周围三角形面积进而得出答案;利用关于y轴对称点的性质得出答案;利用三角形面积求法得出符合题意的答案.【详解】如图所示:的面积是:;故答案为4;点D与点C关于y轴对称,则点D的坐标为:;故答案为;为x轴上一点,的面积为4,,点P的横坐标为:或,故P点坐标为:或.【点睛】此题主要考查了三角形面积求法以及关于y轴对称点的性质,正确得出对应点位置是解题关键.21、(1)点的坐标为,点B的坐标为,;(2)①;;②A.;B.点的坐标为或或或.【分析】(1)根据一次函数与坐标轴的交点坐标特点即可求出,两点的坐标,把点坐标代入即可求出b;(2)①依题意得P(t,0),把x=t分别代入直线,即可表示出D,E的坐标;②A,根据=2,即可求出t,得到,利用即可求解;B,分当点在线段上时和当点在线段的延长线上时分别表示出DE,根据求出t,再根据等腰三角形的性质即可求出点坐标.【详解】(1)将代入得,解,得,点的坐标为.将代入得,点B的坐标为.将代入,得解,得.(2)①依题意得P(t,0),把x=t分别代入直线,得;故答案为;.②A.由①得,,点在线段上,,,.,,解,得.,.B.由①得,.,.当点在线段上时,,,解得.∴P(3,0),D(3,1),E(3,-)设Q(a,0)(0≤a≤4)故QD2=,QE2=,DE=∵为等腰三角形∴QD2=DE2或QE2=DE2即=或=解得a=,(a=舍去)或a=,(a=舍去)∴点的坐标为或.当点在线段的延长线上时,,解得.∴P(6,0),D(6,-2),E(6,1)设Q(a,0)(0≤a≤4)故QD2=,QE2=,DE=3∵为等腰三角形∴QD2=DE2或QE2=DE2即=9或=9解得a=6-,(a=6+舍去)或a=6-2,(a=6+2舍去)点的坐标为或.综上所述,点的坐标为或或或.【点睛】此题主要考查一次函数与几何综合,解题的关键是熟知一次函数的图像与性质、等腰三角形的性质.22、(1)该公司至少购进甲型显示器1台;(2)购买方案有:①甲型显示器1台,乙型显示器27台;②甲型显示器24台,乙型显示器26台;③甲型显示器2台,乙型显示器2台.【分析】(1)设该公司购进甲型显示器x台,则购进乙型显示器(50-x)台,根据两种显示器的总价不超过77000元建立不等式,求出其解即可;(2)由甲型显示器的台数不超过乙型显示器的台数可以建立不等式x≤50-x与(1)的结论构成不等式组,求出其解即可.【详解】解:(1)设该公司购进甲型显示器x台,则购进乙型显示器(50-x)台,由题意,得:1000x+2000(50-x)≤77000解得:x≥1.∴该公司至少购进甲型显示器1台.(2)依题意可列不等式:x≤50-x,解得:x≤2.∴1≤x≤2.∵x为整数,∴x=1,24,2.∴购买方案有:①甲型显示器1台,乙型显示器27台;②甲型显
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论