版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
火电|8种汽轮发电机重大事故案例详解一般说来,汽轮发电机事故多缘于材料和结构上的缺陷。但近年来,随着我国电力生产规模的不断扩大、汽轮发电机单机容量的不断攀升,因机组振动等原因造成的汽轮发电机事故也时有发生,尤其是特重大事故的发生,已经严重影响到机组的安全运行,同时给电厂和发电设备制造厂带来巨大经济损失。下面从事故类型结合国内外典型案例对汽轮发电机常见事故进行介绍。1.轴系断裂事故汽轮发电机组的大部分事故,甚至比较严重的设备损坏事故,多由振动引起,机组异常振动是造成设备损坏的主要原因之一。机组振动会使设备在振动力作用下损坏;长期振动会造成基础及周围建筑物产生共振损坏。这当中,机组轴系扭振现象是发展大电网和大机组所面临的重大课题。1970年代以前,由于单机容量相对较小,扭振的危害性并不突出;但近几十年来,随着超高压大电网和大功率机组的投产,国内外陆续发生多起网-机谐振造成机组严重损毁的重大事故,引起全世界广泛关注。01.日本海南#3机事故
日本关西电力公司海南电厂容量为600MW的#3机于1972年6月在试运行中发生破坏性事故。这次事故在机组发生巨大振动之后的极短时间内即发生。
通常,汽轮发电机振动增大的原因很多,但在如此短的时间内发生如此巨大的振动,#3机#11轴承(励磁机处)损坏可谓该次事故的起因。由于#11轴承的轴承盖和轴承座装配质量不太好,试运行中,转速下降时轴振动特别大,磨损了螺栓的螺纹;超速试验时(转速上升到3850r/min),#11轴承的轴振动骤然增大,致使轴承盖固定螺栓脱出,上轴瓦脱落;而上轴瓦和挡油环一起飞出后,便无法向轴承下半部提供润滑油,#11轴承作用消失。这时,油膜阻尼降低,导致轴系临界转速下降,接近当时的实际转速(3850r/min),引发共振,共振随即导致励磁机轴出现巨大振动(见图)。在机组发生巨大振动之后的极短时间内,多段轴断裂,零部件飞出,并引发火灾,酿成特大事故。图3为#9~#10发电机轴承结构,图4为#11轴承结构图。随着发电机容量的增大及转轴的增长,汽轮发电机的振动问题将会变得更加重要,因此在结构、安装、试运行各方面都应尤为重视。该事故的教训说明,对轴承安装及固定必须采用一种充分考虑了振动问题的安装工艺方法。另外,应从平衡调整方法入手,改进发电机包括励磁机的整个轴系振动计算的检查方法。02.陕西某电厂汽轮发电机组轴系断裂特大事故陕西某电厂(200MW)#5汽轮发电机组于1988年2月,在进行提升转速的危急保安器动作试验时,发生了轴系断裂的特大事故。轴系7处对轮螺栓、轴体5处断裂,共断为13段,主机基本毁坏。当日,做#1飞锤提升转速试验时,试验人员将#5机盘上转速表显示的3228r/min,误看作3328r/min,并手按集控室停机按钮,使得机组跳闸,但并未与相关试验人员联系,致使他们误认为#1飞锤已经动作。做#2飞锤提升转速试验过程中,机组转速升至3302r/min之际,发出类似于汽门动作的声音,试验人员误认为#2飞锤已动作,于是将超速试验手柄放开,后确认#2飞锤并未动作。当转速降至3020r/min时,未发现异常,继续进行#2飞锤动作试验。随即,先听到升速叫声,随即副励磁机喷出灰尘,然后听到一声闷响,发电机端部着火,#1瓦盖翻起,高压后汽封喷出蒸汽,试验人员跌倒。从听到升速叫声到发电机端部着火时间仅约6s至8s。这次事故是由油膜失稳开始,突发性、综合性强烈振动造成轴系严重破坏。该机组轴系稳定性裕度偏低和机组转速飞升超速到3500r/min~3600r/min是酿成这次事故的主要起因。03.新疆某热电厂#3汽轮发电机组特别重大事故新疆某热电厂#3发电机——变压器组于1999年2月发生污闪,#3发电机组跳闸,机组电功率从41MW甩到零。汽轮机抽汽逆止阀水压联锁保护动作,各段抽汽逆止阀关闭,转速飞升到3159r/min后下降。有关人员到现场确认自动主汽门是否关闭,确认转速,并启动交流润滑油泵检查,调整同步器。当时机组振动正常,自动主汽门和调速汽门关闭,转速2960r/min。技术人员认为是污闪造成机组甩负荷,复位调压器和同步器后,同意维持空转、开启主汽门,并将汽机热工联锁保护总开关切至“退除”位置。而复位低压调压器时,出现机组加速,机头颤动,汽轮机声音越来越大等异常情况。机组转速上升到3300r/min时,现场人员立即手打危急遮断器按钮,关闭自动主汽门,同时将同步器复位,但机组转速仍继续上升。他们又数次手打危急遮断器按钮,但转速依然飞速上升。在转速达到3800r/min时,人员撤离,此时转速为4500r/min。不久,#3机组发生超速飞车。随着—声巨响,机组中部有物体飞出,保温棉渣四处散落,汽机下方及冷油器处起火。究其原因,1.27MPa抽汽逆止阀阀碟铰制孔螺栓断裂使阀碟脱落,抽汽逆止阀无法关闭,是机组超速飞车的主要和直接原因;运行人员在发电机差动保护动作后,本应先关闭抽汽电动门后解列调压器,但却未明确上述操作的先后顺序,造成关闭抽汽电动门和解列调压器的无序操作,这是机组超速飞车的次要原因。04.辽宁某电厂#1汽轮发电机组轴系断裂事故辽宁某电厂1999年8月准备检查调速汽门开度时,主汽门关闭,同时伴随一声巨响,发电机后部着火,轴系断为11段,呈10个断裂面,机组严重损坏。其中5处为轴断裂,4处为对轮螺栓断裂,1处为齿型联轴器失效。正是因为齿轮联轴器失效,才使得运行中主油泵小轴与汽轮机主轴脱开。主油泵停止工作、转速失去监测、调节系统失控,上述因素耦合的特殊工况致使低压缸铸铁隔板在压力波冲击作用下碎裂,这是轴系损坏的主要原因。该起事故中,低压缸铸铁隔板碎裂损坏,静、动部件严重碰磨,机组发生强烈振动,则是转子断裂、轴系破坏的主要原因。而齿型联轴器失效,导致转速失去监测、调节系统失控,中压缸瞬时进入大量蒸汽,这种情况当时在国内从未曾发生。现场运行人员对此缺乏正确判断,认为“无异常”,仍按正常操作程序进行起动,致使中、低压缸瞬时进入大量蒸汽,也是原因之一。2.大轴弯曲事故01.黑龙江某电厂大轴弯曲事故黑龙江某电厂电机检修人员1993年11月在#2机处理励磁机整流碳刷冒火缺陷时,因处理工艺水平、技术水平不高,引起环火,导致#2发电机失磁,有功负荷急剧摆动,调速汽门失控,为这次事故埋下祸患。当电气运行值班员为控制发电机失步,用同步器减#2机有功负荷时,已调整无效,故断开灭磁开关,解列该机。#2机解列后,调速汽门不但无法关闭,维持机组空转,且转速急速飞升,引起危急保安器动作,自动主汽门关闭。由于自动主汽门有卡涩缺陷,未关严,造成机组超速事故:首先是汽机末三级叶片断裂损坏,并击穿低压缸发生第一次爆炸,机组强烈振动,串轴加大,轴系稳定破坏,进而损坏发电机密封瓦;其后,氢气溢出发生第二次爆炸并着火,同时引燃汽机透平油及部分电缆;随之,轴系进一步失稳,破坏全部轴承,扭断主轴,使汽轮发电机组各动静部分严重碰磨、撞击,机组严重损坏。关闭主蒸汽管电动主闸门及总汽门后,才完全切断进汽,转子失去转动动力而停止,整个过程的时间短暂。02.国内某电厂机大轴弯曲事故国内某电厂#1机组1998年7月进行第三次启动时,发生大轴弯曲事故。弯曲的直接原因在于高压转子胀差越限,没有及时打闸停机,导致高压前后汽封和隔板汽封轴向、径向碰磨,打闸后惰走过程中高压胀差最大达+5.02mm。高压胀差越限由以下因素引起:(1)接线错误,功率表无指示,没有及时停机处理;高压油动机又开到最大,从而增大了高压胀差的变化率。(2)机组参数不匹配。(3)违反运行规程。规程规定,高压胀差+3.0mm报警,+4.0mm打闸,但该机在高压胀差到4.46mm时才解列、打闸,机组经过长达24min惰走到静止,加重了轴向、径向磨损,造成大轴弯曲事故。3,机组断油烧瓦事故汽轮机组润滑油系统是整个汽轮发电机组的一个重要组成部分,润滑油系统出现异常,严重时会导致汽轮机烧瓦、轴颈拉伤、大轴弯曲、转子动静磨擦甚至整机损坏等恶性事故的发生。实际运行中,因润滑油系统故障而被迫停机的事情常有发生。轴颈损伤对汽轮发电机组影响大,且轴颈损伤的同时常常伴随机组烧瓦。01.浙江某电厂汽轮发电机组烧瓦事故浙江某电厂#1汽轮发电机组1988年8月因油系统中渗有大量空气,自动主汽门自行关闭,调速油泵又未自启动,交流润滑油泵刚自启动即被直流油泵自启动闭锁,故直流油泵自启动后电机烧损,致使断电烧瓦,造成重大事故。应该说,主油泵工作失常是该事故的起因。这次跳机事故之所以扩大成断油烧瓦,主要原因在于直流润滑油泵自启动后电机烧毁,而直流润滑油泵电机烧毁时直流母线电压偏低,造成调速油泵、交流润滑油泵手动抢合不成。02.河南某电厂机组轴瓦烧损事故河南某电厂#1机组在2004年9月的168h试运后消缺工作结束,重新启动,运行27h后,#1机组#5轴瓦温度异常升高到113.35℃。#5瓦金属温度开始上升过程中,其振动也出现异常波动,故于9月30日18:58紧急停机,10月24日启动,机组总共停运24天。其原因在于,#5轴瓦在制造期间少了一道脱氢工艺,使得钨金与瓦块接合面处存有氢气,运行中氢气聚集导致轴瓦鼓包,破坏了顶轴油膜压力,引起轴瓦温度升高,积累至一定程度后,油膜压力下降几乎到零,从而导致轴瓦磨损,这是该事故的主要原因;运行中润滑油质较脏,也是机组运行的一个不安全因素。03.江苏某电厂超临界机组轴颈损伤江苏某电厂安装有2台600MW超临界机组。2006年3月3日,C级检修发电机抽转子发现发电机励端轴瓦严重磨损,轴颈亦严重磨损。3月8日揭开#8轴瓦瓦盖时,发现#8轴瓦轴颈中间部位严重磨损,磨损发生在#8轴瓦轴颈中间位置,轴向长约420mm的轴段,磨损深度(半径方向)0.01mm~0.80mm.最深约1.0mm。翻出#8轴瓦上瓦后发现,上瓦有轻微擦伤,#8轴颈则严重刮伤,有17条伤痕,最大伤痕宽约2mm,深约lmm,伤痕呈圆周状,从中间到两侧依次渐密地分布在#8轴颈处。翻出#8轴瓦下半瓦后发现,发电机端顶轴油囊基本被磨损或被磨损的钨金填平,电机端瓦的表面钨金磨损严重,而汽端钨金表面有严重拉毛现象,拉毛处附着大量纤细钢丝。滤网严重破损造成大量的纤细钢丝进入润滑油系统:大量的纤细滤网钢丝随着润滑油涌进轴颈与轴瓦之间.破坏了轴与瓦之间的油膜,加剧了轴与瓦间的摩擦。事故发生时,顶轴油母管压力已降至9MPa,低于设计值12MPa。在该压力下,#8轴颈已不能完全顶起。由于顶轴油母管压力下降,导致轴颈与轴瓦间隙减小,而此时低压缸两侧的轴瓦随轴承座受凝汽器真空影响而单边偏折,从而易引起轴瓦单侧烧瓦。4,腐蚀及裂纹事故01.护环应力腐蚀裂纹护环用以保护转子端部线圈,尤其两级汽轮发电机转速高,护环得承受很大的机械应力,是汽轮发电机最关健的锻件,因此人们对护环材料的质量要求相当高。2000年前,国产和进口300MW及以上容量的汽轮发电机都曾发生不同性质的事故,而护环事故比较突出,其中应力腐蚀破裂又占大多数,为此造成有的发电机事故后停机上千小时进行修复,损失电量上亿kWh,特别值得注意。如1987年某电厂#7发电机组于l986年11月投产,1987年1月事故停机。护环经检查发现嵌装面圆角处有应力腐蚀裂纹群。山西某电厂200MW氢冷机组1985年投产,1988年大修时检查发现其#3发电机两个护环共5处存在晶界纹,励侧有一处延晶裂纹,长约4mm,汽侧有一处腐蚀坑和晶界裂纹,裂纹长2mm,一般长度为0.1mm~0.3mm。所以应防止护环应力腐蚀,防止不平衡电流(负序流)超过规定值烧损护环,防止发电机超速损坏护环。02定子线棒裂纹事故某电厂#5、#6发电机系原苏联1950年代设计产品,容量200MW,1979年投运。但从1993年开始,#5、#6发电机曾4次出现两端部铁心松动、过热及断齿现象,后又发现定子线棒松动磨损。2002年对#6发电机做两倍频测量,各槽线棒固有振动频率均发生变化。2002年8月,#6发电机运行中,定子线棒汽侧渐开线鼻部近集水盒R弯处导线断裂漏水,停机转检修进行了更换线棒处理。经检查,宏观可见7根线棒断裂。主要原因在于:(1)发电机定子线棒松动,各槽线棒固有振动频率由此发生变化,进而引起部分线棒共振,造成线棒承受较大的周期循环应力;(2)定子线棒汽侧渐开线鼻部近集水盒R弯处导线由于加工时弯曲变形,使该处导线受弯曲力作用且导线外圆部分受到拉应力;裂纹产生部位系焊接区与非焊接区的交界处,故此处又是焊接热影响区,该区域残余应力较大。另外,该部位导线由于绑扎受到约束,所以较大的周期循环应力集中作用于导线R弯处。(3)扁铜管内腐蚀产物中S、Cl和P等腐蚀性物质长期作用于铜管内壁,于管内壁形成腐蚀坑。在腐蚀和周期循环应力作用下,腐蚀坑处形成微裂纹,逐步向外发展形成宏观裂纹,最后贯穿整个管壁,造成扁铜管开裂泄漏。(4)腐蚀性物质S、Cl等应为冷却水带进,水冷器有微漏处,运行过程中不断有少量循环水被带入机冷水中。(5)扁铜管内壁覆盖的含多种物质的腐蚀产物,特别是含有Cu、Fe的腐蚀产物,在磁场作用下易沉积,沉积物堵塞水流可造成发电机定子严重烧损事故,这也是不容忽视的一个重要问题。3.转子裂纹事故某电厂600MW#3机组2002年4月因振动过大紧急停机。在制造厂检查时,发现励侧护环内侧100mm处径向跳动值最大达600m,于是又对发电机转子拔护环检查,发现其发电机转子励磁侧护环下本体与轴柄过渡圆角处,存在一沿转子周向165°、最大深度为180mm的裂纹,转子严重损坏、报废。该事故造成的损失巨大。后来由于处理得当,避免了更大事故的发生。此前,早在1998年3月16日就曾因发电机转子励磁引线压板螺钉断裂,造成发电机定转子严重损坏返厂处理,同时将#4发电机定转子换至#3机组上,并于1998年7月10日投入运行。励磁引线压板槽槽底根部R角处严重的应力集中和锻件存在冶金夹渣及材料脆性,是造成转子产生裂纹的主要原因。具体分析,发现制造厂将励磁引线压板槽槽底根部R角曲率半径由原设计6.35mm减小到3mm,实际测量最小处仅约1mm,且形状不规则并带有尖角,应力集中情况尤为严重。同时,转子材质脆性转变温度FATT及冲击韧性超标,为不合格转子。此外,转子裂纹性质为高周疲劳开裂,裂纹断面面积约为转子截面的1/3。裂纹断口为新月形呈浅碟状,断面平坦呈细瓷状,断口附近未见明显宏观变形,为亚临界裂纹扩展。断口宏观形貌具有贝壳纹、一次放射线和二次放射线等疲劳断裂特征,断裂源位于励磁引线压板槽槽底根部R角及附近区域。断口微观形貌具有条纹、小断块和与裂纹扩展方向基本垂直的二次裂纹等疲劳特征。裂纹走向从压板槽槽底根部R角区域开始,在垂直于变截面过渡区主应力方向,沿径向和周向综合扩展,形成疲劳断面。有20%~30%的断面为沿晶断裂,表明材料呈脆性,对缺口的敏感性强。5绝缘击穿接地事故绝缘击穿接地是汽轮发电机的一种多发事故,如某电厂600MW发电机,因转子励磁引线压板螺栓头断裂,造成机毁,损失惨重,历时半年才得以修复。又如另一台进口的660MW发电机,1994年12月并网运行,l996年发生事故.总共只运行了3702h。事故后停机检查,发现定子B相绝缘被击穿接地,汽端定子铁心第2l槽有4段铁齿烧损,出现150mm×90mm×50mm的大洞,部分线棒绝缘因过热损坏,因铁心熔化产生的金属熔渣将转子表面和定子瞠内击伤,历经4个月才得以修复。事故原因一是铁心有伤,产生较大涡流,二是端部通风不良。图5为汽侧铁心烧损部位。上述事故中,制造质量欠佳是发生事故的主要原因,这包括设计、工艺、原材料、厂内试验等,但最主要的还是管理问题。原本有些质量问题在制造厂或工地经返修是可以排除的,而有些质量问题却无法修复、弥补,造成永久性缺陷。比如加工轴颈时其直径小于设计值,或因在厂内做超速试验时断油发生轴颈研磨,不得不将轴颈直径车小;转子通风孔加工时局部地方的通风孔横截面积小于标准值等。6.发电机转子线圈事故1.发电机转子线圈引出线崩毁事故发电机转子线圈是发电机励磁的重要组成部分,其引出线崩断,会使运行中的发电机定子线圈失去励磁而引发事故。四川某电厂#1发电机1992年投入运行。由于辅机设备突然故障短时停机,发电机和励磁机的碳刷、碳刷架、卡簧得到清灰检查,两只发电机转子碳刷(正、负极各一只)被更换。#1发电机正常启机升压至4.8kV、6.3kV时,对发电机、励磁机的常规绝缘检查未发现任何异常,并网后带有功负荷4MW、无功2MVar、定子电流400A时,发电机正极滑环上有一只碳刷出现跳动声响,无火花出现。经调整,卡簧压力仍无法消除,不久,发电机滑环处突然迸发出长达1m的强烈火花,立即按下紧急跳闸按钮,#1发电机解列停机。穿过正极滑环的负极引线绝缘受损,是造成负极引线与正极滑环短路的原因。从设计方面来看,发电机转子绕组引入连续励磁电流的正、负极滑环可以在发电机转子的两端,也可以在转子的同一端。#1发电机的正、负极滑环就是按照在转子同一端集中布置在汽轮机侧设计制造。这样的设计存在如下弊端:负极引线穿过正极滑环,给负极引线与正极滑环提供了短路机会;使发电机侧的滑环与发电机端盖间的距离相对缩短,仅有25mm(发电机正、负极滑环按两端设计布置,该尺寸为50mm),起吊发电机端盖很容易机械撞伤引线绝缘;十分不便日常检查穿过正极滑环处负极引线的绝缘及引线下的绝缘垫块。发电机正、负极滑环的表面,每隔10mm的宽度有起冷却作用的螺旋形导风沟(宽约5mm),存在弊端:它使碳刷有效接触面降低,接触电阻加大,发热增大,温度升高。最恶劣的时候,#1机正、负极滑环温度高达120℃;螺旋形导风沟(宽约5mm)过宽,碳刷与导风沟相切割力度变化大,磨损脱落的碳粉较多。2.转子绕组匝间短路或接地故障转子绕组匝间短路或接地故障,轻则使机组振动增大超标,重则使机组大轴、轴承及其他部件磁化,以致烧损等,危害机组安全运行。如某电厂#1发电机,1991年8月投入运行,1993年4月发生转子绕组匝间短路并接地故障。事故后拔护环检查,发现护环下绝缘瓦块烧穿,汽侧S极#7、#8线包表层线匝有短路痕迹,其间绝缘隔板被烧成深15mm、长100mm的沟槽,#8线包表层线匝烧成缺口,面积为9mm×10mm,密封瓦及转子轴颈大面积烧伤,大轴磁化。事故原因是制造过程中端部遗留有金属异物,经长期运行使得线匝短路。又如某电厂#1发电机.l993年3月投入运行,转子频繁出现不稳定接地信号,数次进行技术处理,消除接地点。1998年6月,机组消除缺陷后在启动中出现发电机#5、#6瓦轴振增大问题。重新检查转子绕组时,发现最小一套线包(最里面)引至滑环的软连接线呈形,与第二套线包底匝铜导线短路,后在现场处理恢复运行。再如某电厂#4双水内冷发电机于l995年12月突然发生转子滑环着火事故。事后检查,发现正极滑环烧毁、刷架烧焦、负极引线入口处烧成椭圆形空洞(约40mm×50mm×60mm),2/3以上铜皮引线截面烧断,从整流柜接到正极滑环的6根电缆长达600mm绝缘及铜鼻子被烧毁,原因是转子绕组先发生一点接地后发展为正负极短路。7.定子事故7.1定子绕组事故7.11水冷定子线圈烧坏国产QFSN-3002-2型(水氢氢)和QFS-3002-2型(双水内冷)发电机定子线圈均是水内冷,近年来发生多台定子线圈烧坏事故。发电机在运行中因线圈局部温度升高,绝缘过热损坏造成线圈接地短路。事故后检查发现,多台发电机定子线圈中空心导线内有异物,堵塞了导线空心部分,造成局部过热,损坏绝缘,有的甚至将导线烧熔,铁心也受到不同程度的损坏。空心导线被异物堵塞的原因,大部分是在制造过程中造成的,如有2台发电机在事故后检查出空心导体中遗留有在厂内做水压试验时用的堵头(橡皮塞);造成堵塞的原因还有:因过滤网破裂致使杂物进入水路引起堵塞,或过滤网清理不及时造成杂物堵塞,PH值控制不当造成铜管中结垢(氧化铜)而发生堵塞等。图6为转子引线固定结构。7.1.2定子空心铜线或引水管破裂漏水QFS-300-2型发电机发生过多台次空心铜导线破裂漏水事故,引水管破裂事故发生过5台次。造成空心铜导线破裂的原因主要是对原材料或成品的探伤检查不严格及工艺不良;引水管破裂原因与检查不严、设计和工艺均有关,如相互交叉磨破、与外壳距离不够而放电、固定不良导致磨破、安装或检修时不慎受伤破裂等。7.1.3定子水路断水近年来,定子内冷水系统断水造成停机事故较为突出。其原因包括,水箱水位过低、流量小使断水保护运作停机;运行中水量波动过大、断水保护动作;内冷水泵无安全阀,水路出现汽化,中止流量;水泵振动大、辅助接触器不良使保护器动作及引水管破裂。7.1.4定子绕组出口短路QFSN-300-2型发电机,先后有数台在运行中发生过出口突然短路事故,原因各异。如某电厂#1发电机因水蒸汽进入出线箱,造成绝缘电阻降低,引起绕组接地短路,击穿出线箱,强大的汽浪花将出线箱炸裂。运行1个月后停机检查,发现副励磁机(无刷励磁系统)风扇12只M
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年反担保协议协议样本
- 2024年有限责任公司成立协议模板
- 2024年钻孔桩作业人工分包协议范本
- 2024企业员工福利补充协议
- 常州办公室职员劳动协议书
- 2024年原材料供应直接承包协议
- 2024年综合能源管理专项服务协议
- 2024年协议法规定的技术咨询协议
- 海洋地理课件教学课件
- 阅读专项课件教学课件
- 第1章 复合材料概论
- 过程审核检查表-VDA6.3可落地执行
- 三年级校本课程教案(全)
- 二级耳鼻喉医院基本标准
- 新能源产业链深度分析
- 2024年医疗信息安全培训资料
- 无人机飞行操作手册
- 智慧环卫行业现状分析报告
- 车辆定点维修询价文件
- 教师教学述评管理制度
- 建立网络安全管理责任制明确安全工作职责和责任
评论
0/150
提交评论