课时跟踪检测(十六) 动能定理及其应用_第1页
课时跟踪检测(十六) 动能定理及其应用_第2页
课时跟踪检测(十六) 动能定理及其应用_第3页
课时跟踪检测(十六) 动能定理及其应用_第4页
课时跟踪检测(十六) 动能定理及其应用_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

PAGE第5页共6页课时跟踪检测(十六)动能定理及其应用一、立足主干知识,注重基础性和综合性1.(2021·广州模拟)静止在地面上的物体在不同合外力F的作用下通过了相同的位移x0,下列情况中物体在x0位置时速度最大的是()解析:选CF­x图线与x轴所围面积表示合外力F所做的功,由动能定理可知,物体在x0位置速度最大的情况一定对应F­x图线与x轴所围面积最大的情况,故选项C正确。2.水平放置的光滑圆环,半径为R,AB是其直径。一质量为m的小球穿在环上并静止于A点。沿AB方向水平向右的风力大小恒为F=mg。小球受到轻扰而开始运动,则下列说法正确的是()A.小球运动过程中的最大速度为2eq\r(gR)B.小球运动过程中的最大动能为(eq\r(2)+1)mgRC.运动中小球对环的最大压力为5mgD.运动中小球对环的最大压力为(3eq\r(2)+2)mg解析:选A小球从A点运动至B点时速度最大,由动能定理得F·2R=eq\f(1,2)mv2,解得v=2eq\r(gR),最大动能为Ekm=eq\f(1,2)mv2=eq\f(1,2)m×4gR=2mgR,故A正确,B错误;在水平面内由牛顿第二定律得FN1-mg=meq\f(v2,R),解得FN1=5mg,竖直面内FN2=mg,所以小球对环的最大压力FN=eq\r(FN12+FN22)=eq\r(26)mg,故C、D均错误。3.(2021·安徽师大附中测试)如图所示,半径为R的水平转盘上叠放有两个小物块P和Q,P的上表面水平,P到转轴的距离为r。转盘的角速度从0开始缓缓增大,直至P恰好能与转盘发生相对滑动,此时Q受到P的摩擦力设为f,在此过程中P和Q相对静止,转盘对P做的功为W。已知P和Q的质量均为m,P与转盘间的动摩擦因数为μ1,P与Q间的动摩擦因数为μ2,已知最大静摩擦力等于滑动摩擦力,下列判断正确的是()A.f=μ2mg B.W=0C.W=μ1mgr D.条件不足,W无法求出解析:选C设刚要发生相对滑动时P、Q的速度为v,对P、Q整体,摩擦力提供向心力有μ1·2mg=2meq\f(v2,r);根据动能定理,此过程中转盘对P做的功W=eq\f(1,2)·2mv2=μ1mgr,选项B、D错误,C正确;在此过程中,物块Q与P之间的摩擦力不一定达到最大静摩擦力,则此时Q受到P的摩擦力不一定为μ2mg,选项A错误。4.如图所示,电梯质量为M,在它的水平地板上放置一质量为m的物体。电梯在钢索的拉力作用下竖直向上加速运动,当电梯的速度由v1增加到v2时,上升高度为H,则在这个过程中,下列说法或表达式正确的是()A.对物体,动能定理的表达式为WN=eq\f(1,2)mv22,其中WN为支持力的功B.对物体,动能定理的表达式为W合=0,其中W合为合力的功C.对物体,动能定理的表达式为WN-mgH=eq\f(1,2)mv22-eq\f(1,2)mv12,其中WN为支持力的功D.对电梯,其所受合力做功为eq\f(1,2)(M+m)v22-eq\f(1,2)(M+m)v12解析:选C电梯上升的过程中,对物体做功的有重力mg、支持力FN,这两个力的总功才等于物体动能的增量ΔEk=eq\f(1,2)mv22-eq\f(1,2)mv12,故选项A、B错误,C正确;对电梯,无论有几个力对它做功,由动能定理可知,其合力的功一定等于其动能的增量eq\f(1,2)Mv22-eq\f(1,2)Mv12,故选项D错误。5.质量相等的A、B两物体放在同一水平面上,分别受到水平拉力F1、F2的作用从静止开始做匀加速直线运动。经过时间t0和4t0速度分别达到2v0和v0时,分别撤去F1和F2,以后物体继续做匀减速直线运动直至停止,两物体速度随时间变化的图线如图所示。则下列结论正确的是()A.A、B物体所受摩擦力Ff1∶Ff2=2∶1B.A、B物体所受摩擦力Ff1∶Ff2=1∶1C.F1和F2对A、B做的功W1∶W2=4∶1D.F1和F2对A、B做的功W1∶W2=12∶5解析:选B从图像可知,两物体匀减速运动的加速度大小都为a=eq\f(v0,t0),根据牛顿第二定律,匀减速运动中有Ff=ma,则两物体所受摩擦力相同,故A错误,B正确;图线与时间轴所围成的面积表示运动的位移,则A、B的位移之比为6∶5,对全过程运用动能定理得,W1-Ffx1=0,W2-Ffx2=0,解得W1=Ffx1,W2=Ffx2,所以整个运动过程中F1和F2做功之比为6∶5,故C、D均错误。6.(2018·江苏高考改编)如图所示,轻质弹簧一端固定,另一端连接一小物块,O点为弹簧在原长时物块的位置。物块由A点静止释放,沿粗糙程度相同的水平面向右运动,最远到达B点。在从A到B的过程中,物块()A.在O点的加速度为零B.经过O点时的速度最大C.所受弹簧弹力始终做正功D.所受弹簧弹力做的功等于克服摩擦力做的功解析:选D小物块由A点开始向右加速运动,弹簧压缩量逐渐减小,F弹减小,由F弹-Ff=ma知,a减小;当运动到F弹=Ff时,a减小为零,此时小物块速度最大,弹簧仍处于压缩状态;由于惯性,小物块继续向右运动,此时Ff-F弹=ma,小物块做减速运动,且随着压缩量继续减小,a逐渐增大;当越过O点后,弹簧开始被拉伸,此时F弹+Ff=ma,随着拉伸量增大,a继续增大,综上所述,从A到B过程中,物块加速度先减小后增大,在O点左侧F弹=Ff时速度达到最大,故A、B均错误。在AO段物块所受弹簧弹力做正功,在OB段做负功,故C错误。由动能定理知,从A到B的过程中,弹力做功与摩擦力做功之和为0,故D正确。7.(2019·全国卷Ⅲ)从地面竖直向上抛出一物体,物体在运动过程中除受到重力外,还受到一大小不变、方向始终与运动方向相反的外力作用。距地面高度h在3m以内时,物体上升、下落过程中动能Ek随h的变化如图所示。重力加速度取10m/s2。该物体的质量为()A.2kg B.1.5kgC.1kg D.0.5kg解析:选C画出物体运动示意图,设阻力为f,据动能定理知A→B(上升过程):-(mg+f)h=EkB-EkAC→D(下落过程):(mg-f)h=EkD-EkC整理以上两式得:mgh=30J,解得物体的质量m=1kg。选项C正确。8.如图所示,轻质弹簧一端固定在墙壁上的O点,另一端自由伸长到A点,OA之间的水平面光滑,固定曲面在B处与水平面平滑连接。AB之间的距离s=1m。质量m=0.2kg的小物块开始时静置于水平面上的B点,物块与水平面间的动摩擦因数μ=0.4。现给物块一个水平向左的初速度v0=5m/s,g取10m/s2。(1)求弹簧被压缩到最短时所具有的弹性势能Ep;(2)求物块返回B点时的速度大小;(3)若物块能冲上曲面的最大高度h=0.2m,求物块沿曲面上滑过程所产生的热量。解析:(1)对小物块从B点至压缩弹簧最短的过程,由动能定理得,-μmgs-W克弹=0-eq\f(1,2)mv02W克弹=Ep代入数据解得Ep=1.7J。(2)对小物块从B点开始运动至返回B点的过程,由动能定理得,-μmg·2s=eq\f(1,2)mvB2-eq\f(1,2)mv02代入数据解得vB=3m/s。(3)对小物块沿曲面的上滑过程,由动能定理得-W克f-mgh=0-eq\f(1,2)mvB2产生的热量Q=W克f=0.5J。答案:(1)1.7J(2)3m/s(3)0.5J二、强化迁移能力,突出创新性和应用性9.(2021·蚌埠模拟)如图所示,B、M、N分别为竖直光滑圆弧轨道的右端点、最低点和左端点,B点和圆心等高,N点和圆心O的连线与竖直方向的夹角为α=60°。现从B点的正上方某处A点由静止释放一个质量为m的小球,经圆轨道飞出后以水平方向上的速度v通过C点,已知圆弧轨道半径为R,v=eq\r(gR),重力加速度为g,则以下结论正确的是()A.C、N的水平距离为eq\r(3)RB.C、N的水平距离为2RC.小球在M点对轨道的压力为5mgD.小球在M点对轨道的压力为4mg解析:选A采用逆向思维,C到N做平抛运动,即沿N点切线方向进入,根据平行四边形定则知,小球在N点的竖直分速度vyN=vtan60°=eq\r(3)v=eq\r(3gR),则N到C的时间t=eq\f(vyN,g)=eq\f(\r(3gR),g),C、N的水平距离x=vt=eq\r(3)R,故A正确,B错误;小球运动到N点的速度vN=eq\r(v2+vyN2)=2eq\r(gR),根据动能定理得,mgR(1-cosα)=eq\f(1,2)mvM2-eq\f(1,2)mvN2,在M点,根据牛顿第二定律得FN-mg=meq\f(vM2,R),联立解得FN=6mg,根据牛顿第三定律可知小球对轨道的压力为6mg,故C、D均错误。10.(2021·无锡一模)在一次航模比赛中,某同学遥控航模飞机竖直上升,某段过程中其动能Ek随位移x变化的关系如图所示。已知飞机质量为1kg,重力加速度g=10m/s2,此过程中飞机()A.处于超重状态 B.机械能减少C.加速度大小为4.5m/s2 D.输出功率最大值为27W解析:选C由题图可知,飞机动能逐渐减小,由Ek=eq\f(1,2)mv2可知,初速度v0=eq\r(\f(2Ek,m))=6eq\r(2)m/s,当飞机上升8m时,动能为零,速度为零,故飞机在向上运动的过程中,飞机做减速运动,处于失重状态,故选项A错误;动能减少量为ΔEk=36J,重力势能增加量为ΔEp=mgh=80J,故机械能的增加量ΔE=44J,故选项B错误;在升力F作用下,飞机向上运动,根据动能定理可得(F-mg)x=Ek-Ek0,解得Ek=Ek0+(F-mg)x,故图线斜率表示飞机所受到的合力,故F合=eq\f(0-36,8-0)N=-4.5N,根据牛顿第二定律可知F合=ma,解得a=-4.5m/s2,故选项C正确;F合=F-mg,解得F=5.5N,升力恒定,当速度最大时,输出功率最大,即刚开始起飞时,输出功率最大,Pm=Fv0=33eq\r(2)W,故选项D错误。11.(2021年1月新高考8省联考·重庆卷改编)如图所示,倾角为θ的斜面MN段粗糙,其余段光滑,PM、MN长度均为3d。四个质量均为m的相同样品1、2、3、4放在斜面上,每个样品(可视为质点)左侧固定有长度为d的轻质细杆,细杆与斜面平行,且与其左侧的样品接触但不粘连,样品与MN间的动摩擦因数为tanθ。若样品1在P处时,四个样品由静止一起释放,以下结论错误的是(重力加速度大小为g)()A.当样品1刚进入MN段时,样品的共同加速度大小为eq\f(3,4)gsinθB.当样品1刚进入MN段时,样品1的轻杆受到压力大小为3mgsinθC.当四个样品均位于MN段时,摩擦力做的总功为-6dmgsinθD.当四个样品均位于MN段时,样品的共同速度大小为3eq\r(gdsinθ)解析:选B当样品1刚进入MN段时,以四个样品整体为研究对象,根据牛顿第二定律得4mgsinθ-μmgcosθ=4ma1,解得样品的共同加速度大小为a1=eq\f(3,4)gsinθ,以样品1为研究对象,根据牛顿第二定律得F1+mgsinθ-μmgcosθ=ma1,解得样品1的轻杆受到压力大小为F1=eq\f(3,4)mgsinθ,故A正确,B错误;当四个样品均位于MN段时,摩擦力对样品1做功W1=-μmgcosθ·3d=-3mgdsinθ,摩擦力对样品2做功W2=-μmgcosθ·2d=-2mgdsinθ,摩擦力对样品3做功W3=-μmgcosθ·d=-mgdsinθ,此时样品4刚进入MN段,摩擦力对样品4不做功,所以当四个样品均位于MN段时,摩擦力做的总功为Wf=W1+W2+W3=-6mgdsinθ,故C正确;当四个样品均位于MN时,由动能定理得:4mg·6d·sinθ+Wf=eq\f(1,2)×4mv2,可解得v=3eq\r(gdsinθ),选项D正确。12.(2021·苏州六校联考)如图所示,质量为m=0.3kg的小物块以初速度v0=4m/s水平向右抛出,恰好从A点沿着圆弧的切线方向进入光滑圆弧轨道。圆弧轨道的半径为R=3.75m,B点是圆弧轨道的最低点,圆弧轨道与水平轨道BD平滑连接,A与圆心O的连线与竖直方向成37°角。MN是一段粗糙的水平轨道,小物块与MN间的动摩擦因数μ=0.1,轨道其他部分光滑。最右侧是一个半径为r=0.4m的光滑半圆弧轨道,C点是半圆弧轨道的最高点,半圆弧轨道与水平轨道BD在D点平滑连接。已知重力加速度g=10m/s2,sin37°=0.6,cos37°=0.8。(1)求小物块经过A点时速度大小;(2)求小物块经过B点时对轨道的压力大小;(3)若小物块恰好能通过C点,求MN的长度L。解析:(1)根据平抛运动的规律有v0=vAcos37°得小物块经过A点时的速度大小vA=5m/s。

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论