高考数学冲刺专题复习之-平面向量_第1页
高考数学冲刺专题复习之-平面向量_第2页
高考数学冲刺专题复习之-平面向量_第3页
高考数学冲刺专题复习之-平面向量_第4页
高考数学冲刺专题复习之-平面向量_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

PAGE高考数学(文)冲刺专题复习之——平面向量一、知识点梳理(一)平面向量的概念及线性运算1.向量的有关概念(1)向量:既有大小又有方向的量叫向量;向量的大小叫做向量的模.(2)零向量:长度等于0的向量,其方向是任意的.(3)单位向量:长度等于1个单位的向量(与共线的单位向量是).(4)平行向量(又叫共线向量):方向相同或相反的非零向量、叫做平行向量,记作:∥,规定零向量和任何向量平行(共线)。提醒:①相等向量一定是共线向量,但共线向量不一定相等;②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线,但两条直线平行不包含两条直线重合;③平行向量无传递性!(因为有);④三点共线共线;(5)相等向量:长度相等且方向相同的向量,相等向量有传递性.(6)相反向量:长度相等且方向相反的向量.2.向量的线性运算向量运算定义法则(或几何意义)运算律加法求两个向量和的运算三角形法则平行四边形法则交换律:a+b=b+a.(2)结合律:(a+b)+c=a+(b+c)减法求a与b的相反向量-b的和的运算叫做a与b的差三角形法则a-b=a+(-b)(1)定义:①加法:(1)向量加法的三角形法则:;其要求是:(Ⅰ)前一向量的终点与后一向量的起点的重合,(Ⅱ)由第一个向量的起点指向最后一个向量的终点。(2)向量加法的平行四边形法则:其要求是:(Ⅰ)把两个向量的起点平移到同一点,再以这两个已知向量为邻边作平行四边形,(Ⅱ)向量的和为这两邻边所夹的对角线。(3)由有向线段首尾顺次相接所围成的封闭图形结果为。即:(Ⅰ)(三角形三边的向量和)(Ⅱ)。一般地,首尾顺次相接的多个向量的和等于从第一个向量起点指向最后一个向量终点的向量.②减法:,其要求是:(1)两个向量的起点为同一点,(2)由后一个向量的终点指一向前向量(2)坐标运算:若a=(),b=()则ab=().(3)几何表示:平行四边形法则、三角形法则以向量=、=为邻边作平行四边形ABCD,则两条对角线的向量=+,=-,=-且有︱︱-︱︱≤︱︱≤︱︱+︱︱.3.向量的数乘运算及其几何意义(1)定义:实数λ与向量a的积是一个向量,这种运算叫向量的数乘,记作λa,它的长度与方向规定如下:①|λa|=|λ||a|;②当λ>0时,λa与a的方向相同;当λ<0时,λa与a的方向相反;当λ=0时,λa=0.(2)运算律:设λ,μ是两个实数,则①λ(μa)=(λμ)a;②(λ+μ)a=λa+μa;③λ(a+b)=λa+λb.(3)若=(),则·=().4.共线向量定理(1)向量b与非零向量共线的充要条件是有且仅有一个实数,使得b=.(2)若=(),b=()则∥b.注意:(1)向量共线的充要条件中要注意“a≠0”,否则λ可能不存在,也可能有无数个(2)证明三点共线问题,可用向量共线来解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线;另外,利用向量平行证明向量所在直线平行,必须说明这两条直线不重合.(二)平面向量的基本定理及其坐标表示1.平面向量基本定理如果e1,e2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2,其中不共线的向量e1,e2叫表示这一平面内所有向量的一组基底.2.平面向量坐标运算(1)向量加法、减法、数乘向量及向量的模设a=(x1,y1),b=(x2,y2),则a+b=(x1+x2,y1+y2),a-b=(x1-x2,y1-y2),λa=(λx1,λy1),|a|=eq\r(x\o\al(2,1)+y\o\al(2,1)).(2)向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标.②设A(x1,y1),B(x2,y2),则eq\o(AB,\s\up6(→))=(x2-x1,y2-y1),|eq\o(AB,\s\up6(→))|=eq\r(x2-x12+y2-y12).3.平面向量共线的坐标表示设a=(x1,y1),b=(x2,y2),其中b≠0,当且仅当x1y2-x2y1=0时,向量a,b共线.注意:(1)向量坐标与点的坐标的区别:在平面直角坐标系中,以原点为起点的向量eq\o(OA,\s\up6(→))=a,点A的位置被向量a唯一确定,此时点A的坐标与a的坐标统一为(x,y),但应注意其表示形式的区别,如点A(x,y),向量a=eq\o(OA,\s\up6(→))=(x,y).当平面向量eq\o(OA,\s\up6(→))平行移动到eq\o(O1A1,\s\up6(→))时,向量不变,即eq\o(O1A1,\s\up6(→))=eq\o(OA,\s\up6(→))=(x,y),但eq\o(O1A1,\s\up6(→))的起点O1和终点A1的坐标都发生了变化.(2)误区=0⑤若A(x1,y1),B(x2,y2),则=(x2-x1,y2-y1)⑥距离公式:||=(x⑦若=(x1,y1),=(x2,y2),则∙=(x1,y1)∙(x2,y2)=x1x2+y1y2。⑧向量垂直的充要条件:设=(x1,y1),=(x2,y2),则.特别地⑨向量夹角公式的坐标表示:两个向量=(x1,y1),=(x2,y2),、的夹角为θ,则cosθ=2、向量中一些常用的结论:(1)一个封闭图形首尾连接而成的向量和为零向量,要注意运用;(2),特别地:当同向或有;当反向或有;当不共线(这些和实数比较类似).(3)在中:①若,则其重心的坐标为;②为的重心,特别地为的重心;③为的垂心;④向量所在直线过的内心(是的角平分线所在直线);⑤的内心;(3)若P分有向线段所成的比为,点为平面内的任一点,则,特别地为的中点;(4)向量中三终点共线存在实数使得且.二、考点、题型及方法考点1平面向量的线性运算与坐标运算(模长、平行、垂直、夹角、投影等问题)1、(上海)已知向量,若,则等于()(A).(B).(C).(D)解析:由题意得2-(-3)3=0,所以=。2、(湖南卷文)在中,AB=3,AC=2,BC=,则()A.B.C.D.【解析】由余弦定理得所以选D.3、(浙江卷文)已知向量,.若向量满足,,则(D)A.B.C.D.4、(江西卷文)已知向量,,,若则=.答案:【解析】因为所以.5、(江苏)已知e1,e2是夹角为eq\f(2π,3)的两个单位向量,a=e1-2e2,b=ke1+e2,若a·b=0,则实数k的值为________.解析由题意知:a·b=(e1-2e2)·(ke1+e2)=0,即keeq\o\al(2,1)+e1e2-2ke1e2-2eeq\o\al(2,2)=0,即k+coseq\f(2π,3)-2kcoseq\f(2π,3)-2=0,化简可求得k=eq\f(5,4).6、(浙江卷)已知,b是平面内两个互相垂直的单位向量,若向量满足,则的最大值是(A)1(B)2(C)(D)解析:本小题主要考查向量的数量积及向量模的相关运算问题。展开则的最大值是;或者利用数形结合,,对应的点A,B在圆上,对应的点C在圆上即可.7、(广东)若向量a,b,c满足a∥b且a⊥c,则c·(a+2b)=().A.4B.3C.2D.0解析由a∥b及a⊥c,得b⊥c,则c·(a+2b)=c·a+2c·b=0.故选D.答案D8、(全国卷Ⅱ)已知向量,则() A. B. C. D.解:。故选C9、(辽宁卷)平面向量a与b的夹角为,,则(A)(B)(C)4(D)12【解析】由已知|a|=2,|a+2b|2=a2+4a·b+4b2=4+4×2×1×cos60°+4=12∴选B10、(新课标全国)已知a与b均为单位向量,其夹角为θ,有下列四个命题:p1:|a+b|>1⇔θ∈eq\b\lc\[\rc\)(\a\vs4\al\co1(0,\f(2π,3)));p2:|a+b|>1⇔θ∈eq\b\lc\(\rc\](\a\vs4\al\co1(\f(2π,3),π));p3:|a-b|>1⇔θ∈eq\b\lc\[\rc\)(\a\vs4\al\co1(0,\f(π,3)));p4:|a-b|>1⇔θ∈eq\b\lc\(\rc\](\a\vs4\al\co1(\f(π,3),π)).其中的真命题是().A.p1,p4B.p1,p3C.p2,p3D.p2,p4解析由|a+b|=eq\r(a2+2a·b+b2)=eq\r(2+2cosθ)>1,得2+2cosθ>1,∴cosθ>-eq\f(1,2),∴0≤θ<eq\f(2π,3).由|a-b|=eq\r(a2-2a·b+b2)=eq\r(2-2cosθ)>1,得2-2cosθ>1,∴cosθ<eq\f(1,2),∴eq\f(π,3)<θ<π.∴p1,p4正确.答案A11、(全国文)设向量a,b满足|a|=|b|=1,a·b=-eq\f(1,2),则|a+2b|=().A.eq\r(2)B.eq\r(3)C.eq\r(5)D.eq\r(7)解析依题意得(a+2b)2=a2+4b2+4a·b=5+4×eq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(1,2)))=3,则|a+2b|=eq\r(3),故选B.12、(湖北文)已知向量a=(1,2),b=(1,-1),则2a+b与a-b的夹角等于().A.-eq\f(π,4)B.eq\f(π,6)C.eq\f(π,4)D.eq\f(3π,4)解析2a+b=(3,3),a-b=(0,3),则cos〈2a+b,a-b〉=eq\f(2a+b·a-b,|2a+b|·|a-b|)=eq\f(9,3\r(2)×3)=eq\f(\r(2),2),故夹角为eq\f(π,4),选C.13、(宁夏)若,且,则与的夹角是 () A. B. C. D.B14、若向量=,=,且,的夹角为钝角,则的取值范围是______________.错误分析:只由的夹角为钝角得到而忽视了不是夹角为钝角的充要条件,因为的夹角为时也有从而扩大的范围,导致错误.正确解法:,的夹角为钝角,解得或(1)又由共线且反向可得(2)由(1),(2)得的范围是答案:.训练1设平面向量=(-2,1),=(λ,-1),若与的夹角为钝角,则λ的取值范围是()A、B、C、D、错因:忽视使用时,其中包含了两向量反向的情况,正解:A训练2已知,,如果与的夹角为锐角,则的取值范围是______(答:或且);15.(浙江卷文)已知是平面内的单位向量,若向量满足,则的取值范围是16、

17、(舍负).18.(陕西卷文)关于平面向量.有下列三个命题:①若,则.②若,,则.③非零向量和满足,则与的夹角为.其中真命题的序号为.(写出所有真命题的序号)解:①,向量与垂直②③构成等边三角形,与的夹角应为所以真命题只有②。考点2向量的数乘的几何意义1.(江西卷文)如图,正六边形中,有下列四个命题:A.B.C.D.其中真命题的代号是(写出所有真命题的代号).【解析】,∴对取的中点,则,∴对设, 则,而,∴错又,∴对∴真命题的代号是2、(辽宁卷)已知O,A,B是平面上的三个点,直线AB上有一点C,满足,则A. B. C. D.解析:本小题主要考查平面向量的基本定理。依题∴答案:A3、在中,,若点满足,则=().A.B.C.D.【解法一】∵∴∴.4.(山东卷)设P是△ABC所在平面内的一点,,则()A.B.C.D.【解析】:因为,所以点P为线段AC的中点,所以应该选B。答案:B。【命题立意】:本题考查了向量的加法运算和平行四边形法则,5、(湖北文)设,在上的投影为,在轴上的投影为2,且,则为(B)A. B. C. D.训练(1)已知,求在方向上的投影(2)已知,求在方向上的投影6、(安徽文)在平行四边形ABCD中,E和F分别是边CD和BC的中点,或=+,其中,R,则+=______。【解析】设、则,,代入条件得【答案】4/37.(天津卷)如图,在平行四边形中,,则.解析:令,,则所以.8、(安徽)在四面体中,为的中点,为的中点,则(用表示).9、(湖北)5.已知和点M满足.若存在实数m使得成立,则m=A.2B.3C.4D.510、(湖南)在中,=90°AC=4,则等于A、-16B、-8C、8D、1611、(四川文)(6)设点是线段的中点,点在直线外,,,则(A)8(B)4(C)2(D)1解析:由=16,得|BC|=4=4而故2答案:C12若为的边的中点,所在平面内有一点,满足,设,则的值为___(答:2)考点3平面向量的综合运用1、平面向量与线性规划(福建卷)已知O是坐标原点,点A(-1,1).若点M(x,y)为平面区域eq\b\lc\{\rc\(\a\vs4\al\co1(x+y≥2,,x≤1,,y≤2))上的一个动点,则eq\o(OA,\s\up6(→))·eq\o(OM,\s\up6(→))的取值范围是().A.[-1,0]B.[0,1]C.[0,2]D.[-1,2]2、平面向量与函数例题(北京)若a,b是非零向量,且a⊥b,|a|≠|b|,则函数f(x)=(xa+b)·(xb-a)是().A.一次函数且是奇函数B.一次函数但不是奇函数C.二次函数且是偶函数D.二次函数但不是偶函数3、平面向量与三角函数例题1(安徽卷)△ABC的面积是30,内角A,B,C所对边长分别为a,b,c,cosA=eq\f(12,13).(1)求eq\o(AB,\s\up6(→))·eq\o(AC,\s\up6(→));(2)若c-b=1,求a的值.先求sinA,再利用面积公式求bc,最后利用数量积及余弦定理可解决.由cosA=eq\f(12,13),得sinA=eq\r(1-\b\lc\(\rc\)(\a\vs4\al\co1(\f(12,13)))2)=eq\f(5,13).(2分)又eq\f(1,2)bcsinA=30,∴bc=156.(4分)(1)eq\o(AB,\s\up6(→))·eq\o(AC,\s\up6(→))=bccosA=156×eq\f(12,13)=144(8分)(2)a2=b2+c2-2bccosA=(c-b)2+2bc(1-cosA)=1+2×156×eq\b\lc

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论