版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届上海市崇明县名校中考适应性考试数学试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(共10小题,每小题3分,共30分)1.某市6月份日平均气温统计如图所示,那么在日平均气温这组数据中,中位数是()A.8 B.10 C.21 D.222.已知线段AB=8cm,点C是直线AB上一点,BC=2cm,若M是AB的中点,N是BC的中点,则线段MN的长度为()A.5cm B.5cm或3cm C.7cm或3cm D.7cm3.如图是一个由5个相同的正方体组成的立体图形,它的三视图是()A. B.C. D.4.某城年底已有绿化面积公顷,经过两年绿化,到年底增加到公顷,设绿化面积平均每年的增长率为,由题意所列方程正确的是().A. B. C. D.5.设α,β是一元二次方程x2+2x-1=0的两个根,则αβ的值是()A.2B.1C.-2D.-16.下列算式的运算结果正确的是()A.m3•m2=m6B.m5÷m3=m2(m≠0)C.(m﹣2)3=m﹣5D.m4﹣m2=m27.下面的几何体中,主视图为圆的是()A. B. C. D.8.下列运算结果正确的是()A.3a﹣a=2B.(a﹣b)2=a2﹣b2C.a(a+b)=a2+bD.6ab2÷2ab=3b9.已知直线m∥n,将一块含30°角的直角三角板ABC,按如图所示方式放置,其中A、B两点分别落在直线m、n上,若∠1=25°,则∠2的度数是()A.25° B.30° C.35° D.55°10.将下列各选项中的平面图形绕轴旋转一周,可得到如图所示的立体图形的是()A. B. C. D.二、填空题(本大题共6个小题,每小题3分,共18分)11.关于x的一元二次方程有两个不相等的实数根,则k的取值范围是▲.12.如图,一下水管道横截面为圆形,直径为100cm,下雨前水面宽为60cm,一场大雨过后,水面宽为80cm,则水位上升______cm.13.将抛物线y=(x+m)2向右平移2个单位后,对称轴是y轴,那么m的值是_____.14.如图,在梯形ABCD中,AB∥CD,∠C=90°,BC=CD=4,AD=2,若,用、表示=_____.15.如图,在矩形ABCD中,AB=4,BC=5,点E是边CD的中点,将△ADE沿AE折叠后得到△AFE.延长AF交边BC于点G,则CG为_____.16.如图,长方体的底面边长分别为1cm和3cm,高为6cm.如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B,那么所用细线最短需要_____cm.三、解答题(共8题,共72分)17.(8分)在中,,BD为AC边上的中线,过点C作于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取,连接BG,DF.求证:;求证:四边形BDFG为菱形;若,,求四边形BDFG的周长.18.(8分)如图,在平面直角坐标系中,A、B为x轴上两点,C、D为y轴上的两点,经过点A、C、B的抛物线的一部分C1与经过点A、D、B的抛物线的一部分C2组合成一条封闭曲线,我们把这条封闭曲线称为“蛋线”.已知点C的坐标为(0,),点M是抛物线C2:(<0)的顶点.(1)求A、B两点的坐标;(2)“蛋线”在第四象限上是否存在一点P,使得△PBC的面积最大?若存在,求出△PBC面积的最大值;若不存在,请说明理由;(3)当△BDM为直角三角形时,求的值.19.(8分)根据函数学习中积累的知识与经验,李老师要求学生探究函数y=+1的图象.同学们通过列表、描点、画图象,发现它的图象特征,请你补充完整.(1)函数y=+1的图象可以由我们熟悉的函数的图象向上平移个单位得到;(2)函数y=+1的图象与x轴、y轴交点的情况是:;(3)请你构造一个函数,使其图象与x轴的交点为(2,0),且与y轴无交点,这个函数表达式可以是.20.(8分)先化简,再求值:(﹣a)÷(1+),其中a是不等式﹣<a<的整数解.21.(8分)某化工材料经销公司购进一种化工材料若干千克,价格为每千克40元,物价部门规定其销售单价不高于每千克70元,不低于每千克40元.经市场调查发现,日销量y(千克)是销售单价x(元)的一次函数,且当x=70时,y=80;x=60时,y=1.在销售过程中,每天还要支付其他费用350元.求y与x的函数关系式,并写出自变量x的取值范围;求该公司销售该原料日获利w(元)与销售单价x(元)之间的函数关系式;当销售单价为多少元时,该公司日获利最大?最大利润是多少元?22.(10分)先化简,再求值:3a(a1+1a+1)﹣1(a+1)1,其中a=1.23.(12分)如图,是的直径,是圆上一点,弦于点,且.过点作的切线,过点作的平行线,两直线交于点,的延长线交的延长线于点.(1)求证:与相切;(2)连接,求的值.24.如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,且BF是⊙O的切线,BF交AC的延长线于F.(1)求证:∠CBF=∠CAB.(2)若AB=5,sin∠CBF=,求BC和BF的长.
参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解题分析】分析:根据条形统计图得到各数据的权,然后根据中位数的定义求解.详解:一共30个数据,第15个数和第16个数都是22,所以中位数是22.故选D.点睛:考查中位数的定义,看懂条形统计图是解题的关键.2、B【解题分析】(1)如图1,当点C在点A和点B之间时,∵点M是AB的中点,点N是BC的中点,AB=8cm,BC=2cm,∴MB=AB=4cm,BN=BC=1cm,∴MN=MB-BN=3cm;(2)如图2,当点C在点B的右侧时,∵点M是AB的中点,点N是BC的中点,AB=8cm,BC=2cm,∴MB=AB=4cm,BN=BC=1cm,∴MN=MB+BN=5cm.综上所述,线段MN的长度为5cm或3cm.故选B.点睛:解本题时,由于题目中告诉的是点C在直线AB上,因此根据题目中所告诉的AB和BC的大小关系要分点C在线段AB上和点C在线段AB的延长线上两种情况分析解答,不要忽略了其中任何一种.3、D【解题分析】
找到从正面、左面、上看所得到的图形即可,注意所有的看到的棱都应表现在视图中.【题目详解】解:此几何体的主视图有两排,从上往下分别有1,3个正方形;
左视图有二列,从左往右分别有2,1个正方形;
俯视图有三列,从上往下分别有3,1个正方形,
故选A.【题目点拨】本题考查了三视图的知识,关键是掌握三视图所看的位置.掌握定义是关键.此题主要考查了简单组合体的三视图,准确把握观察角度是解题关键.4、B【解题分析】
先用含有x的式子表示2015年的绿化面积,进而用含有x的式子表示2016年的绿化面积,根据等式关系列方程即可.【题目详解】由题意得,绿化面积平均每年的增长率为x,则2015年的绿化面积为300(1+x),2016年的绿化面积为300(1+x)(1+x),经过两年的增长,绿化面积由300公顷变为363公顷.可列出方程:300(1+x)2=363.故选B.【题目点拨】本题主要考查一元二次方程的应用,找准其中的等式关系式解答此题的关键.5、D【解题分析】试题分析:∵α、β是一元二次方程x2+2x-1=0的两个根,∴αβ=考点:根与系数的关系.6、B【解题分析】
直接利用同底数幂的除法运算法则以及合并同类项法则、积的乘方运算法则分别化简得出答案.【题目详解】A、m3•m2=m5,故此选项错误;B、m5÷m3=m2(m≠0),故此选项正确;C、(m-2)3=m-6,故此选项错误;D、m4-m2,无法计算,故此选项错误;故选:B.【题目点拨】此题主要考查了同底数幂的除法运算以及合并同类项法则、积的乘方运算,正确掌握运算法则是解题关键.7、C【解题分析】试题解析:A、的主视图是矩形,故A不符合题意;B、的主视图是正方形,故B不符合题意;C、的主视图是圆,故C符合题意;D、的主视图是三角形,故D不符合题意;故选C.考点:简单几何体的三视图.8、D【解题分析】
各项计算得到结果,即可作出判断.【题目详解】解:A、原式=2a,不符合题意;
B、原式=a2-2ab+b2,不符合题意;
C、原式=a2+ab,不符合题意;D、原式=3b,符合题意;
故选D【题目点拨】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.9、C【解题分析】
根据平行线的性质即可得到∠3的度数,再根据三角形内角和定理,即可得到结论.【题目详解】解:∵直线m∥n,∴∠3=∠1=25°,又∵三角板中,∠ABC=60°,∴∠2=60°﹣25°=35°,故选C.【题目点拨】本题考查平行线的性质,熟练掌握平行线的性质是解题的关键.10、A【解题分析】分析:面动成体.由题目中的图示可知:此圆台是直角梯形转成圆台的条件是:绕垂直于底的腰旋转.详解:A、上面小下面大,侧面是曲面,故本选项正确;B、上面大下面小,侧面是曲面,故本选项错误;C、是一个圆台,故本选项错误;D、下面小上面大侧面是曲面,故本选项错误;故选A.点睛:本题考查直角梯形转成圆台的条件:应绕垂直于底的腰旋转.二、填空题(本大题共6个小题,每小题3分,共18分)11、k<且k≠1.【解题分析】根据一元二次方程kx2-x+1=1有两个不相等的实数根,知△=b2-4ac>1,然后据此列出关于k的方程,解方程,结合一元二次方程的定义即可求解:∵有两个不相等的实数根,∴△=1-4k>1,且k≠1,解得,k<且k≠1.12、10或1【解题分析】
分水位在圆心下以及圆心上两种情况,画出符合题意的图形进行求解即可得.【题目详解】如图,作半径于C,连接OB,由垂径定理得:=AB=×60=30cm,在中,,当水位上升到圆心以下时
水面宽80cm时,则,水面上升的高度为:;当水位上升到圆心以上时,水面上升的高度为:,综上可得,水面上升的高度为30cm或1cm,故答案为:10或1.【题目点拨】本题考查了垂径定理的应用,掌握垂径定理、灵活运用分类讨论的思想是解题的关键.13、1【解题分析】
根据平移规律“左加右减,上加下减”填空.【题目详解】解:将抛物线y=(x+m)1向右平移1个单位后,得到抛物线解析式为y=(x+m-1)1.其对称轴为:x=1-m=0,解得m=1.故答案是:1.【题目点拨】主要考查的是函数图象的平移,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式.14、【解题分析】
过点A作AE⊥DC,利用向量知识解题.【题目详解】解:过点A作AE⊥DC于E,∵AE⊥DC,BC⊥DC,∴AE∥BC,又∵AB∥CD,∴四边形AECB是矩形,∴AB=EC,AE=BC=4,∴DE===2,∴AB=EC=2=DC,∵,∴,∵,∴,∴,故答案为.【题目点拨】向量知识只有使用沪教版(上海)教材的学生才学过,全国绝大部分地区将向量放在高中阶段学习.15、【解题分析】
如图,作辅助线,首先证明△EFG≌△ECG,得到FG=CG(设为x),∠FEG=∠CEG;同理可证AF=AD=5,∠FEA=∠DEA,进而证明△AEG为直角三角形,运用相似三角形的性质即可解决问题.【题目详解】连接EG;∵四边形ABCD为矩形,∴∠D=∠C=90°,DC=AB=4;由题意得:EF=DE=EC=2,∠EFG=∠D=90°;在Rt△EFG与Rt△ECG中,,∴Rt△EFG≌Rt△ECG(HL),∴FG=CG(设为x),∠FEG=∠CEG;同理可证:AF=AD=5,∠FEA=∠DEA,∴∠AEG=×180°=90°,而EF⊥AG,可得△EFG∽△AFE,∴∴22=5•x,∴x=,∴CG=,故答案为:.【题目点拨】此题考查矩形的性质,翻折变换的性质,以考查全等三角形的性质及其应用、射影定理等几何知识点为核心构造而成;对综合的分析问题解决问题的能力提出了一定的要求.16、1【解题分析】
要求所用细线的最短距离,需将长方体的侧面展开,进而根据“两点之间线段最短”得出结果.【题目详解】解:将长方体展开,连接A、B′,∵AA′=1+3+1+3=8(cm),A′B′=6cm,根据两点之间线段最短,AB′==1cm.故答案为1.考点:平面展开-最短路径问题.三、解答题(共8题,共72分)17、(1)证明见解析(2)证明见解析(3)1【解题分析】
利用平行线的性质得到,再利用直角三角形斜边上的中线等于斜边的一半即可得证,利用平行四边形的判定定理判定四边形BDFG为平行四边形,再利用得结论即可得证,设,则,利用菱形的性质和勾股定理得到CF、AF和AC之间的关系,解出x即可.【题目详解】证明:,,,又为AC的中点,,又,,证明:,,四边形BDFG为平行四边形,又,四边形BDFG为菱形,解:设,则,,在中,,解得:,舍去,,菱形BDFG的周长为1.【题目点拨】本题考查了菱形的判定与性质直角三角形斜边上的中线,勾股定理等知识,正确掌握这些定义性质及判定并结合图形作答是解决本题的关键.18、(1)A(,0)、B(3,0).(2)存在.S△PBC最大值为(3)或时,△BDM为直角三角形.【解题分析】
(1)在中令y=0,即可得到A、B两点的坐标.(2)先用待定系数法得到抛物线C1的解析式,由S△PBC=S△POC+S△BOP–S△BOC得到△PBC面积的表达式,根据二次函数最值原理求出最大值.(3)先表示出DM2,BD2,MB2,再分两种情况:①∠BMD=90°时;②∠BDM=90°时,讨论即可求得m的值.【题目详解】解:(1)令y=0,则,∵m<0,∴,解得:,.∴A(,0)、B(3,0).(2)存在.理由如下:∵设抛物线C1的表达式为(),把C(0,)代入可得,.∴C1的表达式为:,即.设P(p,),∴S△PBC=S△POC+S△BOP–S△BOC=.∵<0,∴当时,S△PBC最大值为.(3)由C2可知:B(3,0),D(0,),M(1,),∴BD2=,BM2=,DM2=.∵∠MBD<90°,∴讨论∠BMD=90°和∠BDM=90°两种情况:当∠BMD=90°时,BM2+DM2=BD2,即+=,解得:,(舍去).当∠BDM=90°时,BD2+DM2=BM2,即+=,解得:,(舍去).综上所述,或时,△BDM为直角三角形.19、(1),1;(2)与x轴交于(﹣1,0),与y轴没交点;(3)答案不唯一,如:y=﹣+1.【解题分析】
(1)根据函数图象的平移规律,可得答案;(2)根据自变量与函数值的对应关系,可得答案;(3)根据点的坐标满足函数解析式,可得答案.【题目详解】(1)函数的图象可以由我们熟悉的函数的图象向上平移1个单位得到,故答案为:,1;(2)函数的图象与x轴、y轴交点的情况是:与x轴交于(﹣1,0),与y轴没交点,故答案为:与x轴交于(﹣1,0),与y轴没交点;(3)请你构造一个函数,使其图象与x轴的交点为(2,0),且与y轴无交点,这个函数表达式可以是:y=﹣+1,答案不唯一,故答案为:y=﹣+1.【题目点拨】本题考查了函数图像的平移变换,函数自变量的取值范围,函数图象与坐标轴的交点等知识,利用函数图象的平移规律是解题关键.20、,1.【解题分析】
首先化简(﹣a)÷(1+),然后根据a是不等式﹣<a<的整数解,求出a的值,再把求出的a的值代入化简后的算式,求出算式的值是多少即可.【题目详解】解:(﹣a)÷(1+)=×=,∵a是不等式﹣<a<的整数解,∴a=﹣1,1,1,∵a≠1,a+1≠1,∴a≠1,﹣1,∴a=1,当a=1时,原式==1.21、(1)y=﹣2x+220(40≤x≤70);(2)w=﹣2x2+300x﹣9150;(3)当销售单价为70元时,该公司日获利最大,为2050元.【解题分析】
(1)根据y与x成一次函数解析式,设为y=kx+b(k≠0),把x与y的两对值代入求出k与b的值,即可确定出y与x的解析式,并求出x的范围即可;(2)根据利润=单价×销售量,列出w关于x的二次函数解析式即可;(3)利用二次函数的性质求出w的最大值,以及此时x的值即可.【题目详解】(1)设y=kx+b(k≠0),根据题意得,解得:k=﹣2,b=220,∴y=﹣2x+220(40≤x≤70);(2)w=(x﹣40)(﹣2x+220)﹣350=﹣2x2+300x﹣9150=﹣2(x﹣75)2+21;(3)w=﹣2(x﹣75)2+21,∵40≤x≤70,∴x=70时,w有最大值为w=﹣2×25+21=2050元,∴当销售单价为70元时,该公司日获利最大,为2050元.【题目点拨】此题考查了二次函数的应用,待定系数法求一次函数解析式,以及二次函数的性质,熟练掌握二次函数性质是解本题的关键.22、2【解题分析】试题分析:首先根据单项式乘以多项式的法则以及完全平方公式将括号去掉,然后再进行合并同类项,最后将a的值代入化简后的式子得出答案.试题解析:解:原式=3a3+6a1+3a﹣1a1﹣4a﹣1=3a3+4a1﹣a﹣1,当a=1时,原式=14+16﹣1﹣1=2.23、(1)见解析;(2)【解题分析】
(1)连接,,易证为等边三角形,可得,由等腰三角形的性质及角的和差关系可得∠1=30°,由于可得∠DCG=∠CDA=∠60°,即可求出∠OCG=90°,可得与相切;(2)作于点.设,则,.根据两组对边互相平行可证明四边形为平行四边形,由可证四边形为菱形,由(1)得,从而可求出、的值,从而可知的长度,利用锐角三角函数的定义即可求出的值.【题目详解】(1)连接,.∵是的直径,弦于点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年个人借款及债权转让协议
- 2024年阳江考客运从业资格证考试题目
- 2024年专业轻钢建筑施工协议
- 2024年桨扇发动机项目规划申请报告模范
- 2024年拉萨客运从业资格证模拟考试试题题库及答案
- 仓储工程病虫害防治原理
- 互联网基础设施建设投标指南
- 2024年多肉花盆项目提案报告模范
- 互联网企业保密风险防范指南
- 2024年船用配套设备项目立项申请报告模范
- 人工智能的道德与伦理问题
- 二手车市场项目招商引资方案
- 某部营房改造装修施工组织设计
- 新媒体视听节目制作 第三章 新媒体视听节目的“策划之道”
- 浙江省杭州市西溪中学2023-2024学年八年级上学期期中科学试卷
- 2023年2月抗菌药物临床应用监测与评估报告
- 八年级上册美术-5《中国山水画》【课件】
- 工程量清单及招标控制价编制、审核入库类服务方案
- 乳胶漆墙面施工方案范本
- 浙江省嘉兴市2023年八年级上学期期中数学试卷(附答案)
- Scratch在小学数学中的应用-以《长方形的周长》为例
评论
0/150
提交评论