版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
线代复习资料第-PAGE2–页线性代数复习重点第一部分行列式排列的逆序数(P.5例4;P.26第2、4题)行列式按行(列)展开法则(P.21例13;P.28第9题)行列式的性质及行列式的计算(P.27第8题)第二部分矩阵矩阵的运算性质矩阵求逆及矩阵方程的求解(P.56第17、18题;P.78第5题)伴随阵的性质(P.41例9;P.56第23、24题;P.109第25题)、正交阵的性质(P.116)矩阵的秩的性质(P.69至71;P.100例13、14、15)第三部分线性方程组线性方程组的解的判定(P.71定理3;P.77定理4、5、6、7),带参数的方程组的解的判定(P.75例13;P.80第16、17、18题)齐次线性方程组的解的结构(基础解系与通解的关系)非齐次线性方程组的解的结构(通解)第四部分向量组(矩阵、方程组、向量组三者之间可以相互转换)1.向量组的线性表示2.向量组的线性相关性3.向量组的秩第五部分方阵的特征值及特征向量1.施密特正交化过程2.特征值、特征向量的性质及计算(P.120例8、9、10;P.135第7至13题)3.矩阵的相似对角化,尤其是对称阵的相似对角化(P.135第15、16、19、23题)要注意的知识点:线性代数1、行列式行列式共有个元素,展开后有项,可分解为行列式;代数余子式的性质:①、和的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0;③、某行(列)的元素乘以该行(列)元素的代数余子式为;代数余子式和余子式的关系:行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积;③、上、下三角行列式():主对角元素的乘积;④、和:副对角元素的乘积;⑤、拉普拉斯展开式:、⑥、范德蒙行列式:大指标减小指标的连乘积;⑦、特征值证明的方法:①、;②、反证法;③、构造齐次方程组,证明其有非零解;④、利用秩,证明;⑤、证明0是其特征值;2、矩阵是阶可逆矩阵:(是非奇异矩阵);(是满秩矩阵)的行(列)向量组线性无关;齐次方程组有非零解;,总有唯一解;与等价;可表示成若干个初等矩阵的乘积;的特征值全不为0;是正定矩阵;的行(列)向量组是的一组基;是中某两组基的过渡矩阵;对于阶矩阵:无条件恒成立;矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;关于分块矩阵的重要结论,其中均、可逆:若,则:Ⅰ、;Ⅱ、;②、③、④、⑤、3、矩阵的初等变换与线性方程组一个矩阵,总可经过初等变换化为标准形,其标准形是唯一确定的:;等价类:所有与等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;对于同型矩阵、,若;行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)若,则可逆,且;②、对矩阵做初等行变化,当变为时,就变成,即:;③、求解线形方程组:对于个未知数个方程,如果,则可逆,且;初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;②、,左乘矩阵,乘的各行元素;右乘,乘的各列元素;③、对调两行或两列,符号,且,例如:;④、倍乘某行或某列,符号,且,例如:;⑤、倍加某行或某列,符号,且,如:;矩阵秩的基本性质:①、;②、;③、若,则;④、若、可逆,则;(可逆矩阵不影响矩阵的秩)⑤、;(※)⑥、;(※)⑦、;(※)⑧、如果是矩阵,是矩阵,且,则:(※) Ⅰ、的列向量全部是齐次方程组解(转置运算后的结论); Ⅱ、⑨、若、均为阶方阵,则;三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)行矩阵(向量)的形式,再采用结合律;②、型如的矩阵:利用二项展开式③、利用特征值和相似对角化:伴随矩阵:①、伴随矩阵的秩:;②、伴随矩阵的特征值:;③、、关于矩阵秩的描述:①、,中有阶子式不为0,阶子式全部为0;(两句话)②、,中有阶子式全部为0;③、,中有阶子式不为0;线性方程组:,其中为矩阵,则:①、与方程的个数相同,即方程组有个方程;②、与方程组得未知数个数相同,方程组为元方程;线性方程组的求解:①、对增广矩阵进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解;③、特解:自由变量赋初值后求得;由个未知数个方程的方程组构成元线性方程:①、;②、(向量方程,为矩阵,个方程,个未知数)③、(全部按列分块,其中);④、(线性表出)⑤、有解的充要条件:(为未知数的个数或维数)4、向量组的线性相关性个维列向量所组成的向量组:构成矩阵;个维行向量所组成的向量组:构成矩阵;含有有限个向量的有序向量组与矩阵一一对应;①、向量组的线性相关、无关 有、无非零解;(齐次线性方程组)②、向量的线性表出 是否有解;(线性方程组)③、向量组的相互线性表示 是否有解;(矩阵方程)矩阵与行向量组等价的充分必要条件是:齐次方程组和同解;(例14);(例15)维向量线性相关的几何意义:①、线性相关 ;②、线性相关 坐标成比例或共线(平行);③、线性相关 共面;线性相关与无关的两套定理:若线性相关,则必线性相关;若线性无关,则必线性无关;(向量的个数加加减减,二者为对偶)若维向量组的每个向量上添上个分量,构成维向量组:若线性无关,则也线性无关;反之若线性相关,则也线性相关;(向量组的维数加加减减)简言之:无关组延长后仍无关,反之,不确定;向量组(个数为)能由向量组(个数为)线性表示,且线性无关,则;向量组能由向量组线性表示,则;向量组能由向量组线性表示有解; 向量组能由向量组等价方阵可逆存在有限个初等矩阵,使;①、矩阵行等价:(左乘,可逆)与同解②、矩阵列等价:(右乘,可逆);③、矩阵等价:(、可逆);对于矩阵与:①、若与行等价,则与的行秩相等;②、若与行等价,则与同解,且与的任何对应的列向量组具有相同的线性相关性;③、矩阵的初等变换不改变矩阵的秩;④、矩阵的行秩等于列秩;若,则:①、的列向量组能由的列向量组线性表示,为系数矩阵;②、的行向量组能由的行向量组线性表示,为系数矩阵;(转置)齐次方程组的解一定是的解,考试中可以直接作为定理使用,而无需证明;①、 只有零解只有零解;②、 有非零解一定存在非零解;设向量组可由向量组线性表示为:() 其中为,且线性无关,则组线性无关;(与的列向量组具有相同线性相关性)(必要性:;充分性:反证法) 注:当时,为方阵,可当作定理使用;①、对矩阵,存在, 、的列向量线性无关;②、对矩阵,存在, 、的行向量线性无关;线性相关存在一组不全为0的数,使得成立;(定义)有非零解,即有非零解;,系数矩阵的秩小于未知数的个数;设的矩阵的秩为,则元齐次线性方程组的解集的秩为:;若为的一个解,为的一个基础解系,则线性无关;5、相似矩阵正交
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 速度课程设计讲解
- 2025年度新能源项目公司成立合作协议书规范文本4篇
- 2025年销售人员保密与反不正当竞争协议维护企业合法权益2篇
- 2025年度个人向公司借款用于房屋维修贷款合同范本3篇
- 2025年度智能房屋租赁管理服务承包合同书4篇
- 2025年教育机构厨师团队聘用及餐饮服务质量标准合同2篇
- 二零二五版民房建筑施工安全生产责任合同4篇
- 水库渔业2025年度水产品加工合作协议2篇
- 网络协议课程设计自拟题
- 2025年销售顾问跨区域拓展聘用合同2篇
- 河南省郑州市2023-2024学年高二上学期期末考试 数学 含答案
- 2024年资格考试-WSET二级认证考试近5年真题集锦(频考类试题)带答案
- 试卷中国电子学会青少年软件编程等级考试标准python三级练习
- 公益慈善机构数字化转型行业三年发展洞察报告
- 饲料厂现场管理类隐患排查治理清单
- 2024年公需科目培训考试题及答案
- 【名著阅读】《红岩》30题(附答案解析)
- Starter Unit 2 同步练习人教版2024七年级英语上册
- 分数的加法、减法、乘法和除法运算规律
- 2024年江苏鑫财国有资产运营有限公司招聘笔试冲刺题(带答案解析)
- 2024年辽宁石化职业技术学院单招职业适应性测试题库含答案
评论
0/150
提交评论