现代控制理论试题详细答案_第1页
现代控制理论试题详细答案_第2页
现代控制理论试题详细答案_第3页
现代控制理论试题详细答案_第4页
现代控制理论试题详细答案_第5页
已阅读5页,还剩33页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第页现代控制理论试题B卷及答案一、1系统能控的状态变量个数是,能观测的状态变量个数是。2试从高阶微分方程求得系统的状态方程和输出方程(4分/个)解1.能控的状态变量个数是2,能观测的状态变量个数是1。状态变量个数是2。…..(4分)2.选取状态变量,,,可得…..….…….(1分)…..….…….(1分)写成…..….…….(1分)…..….…….(1分)二、1给出线性定常系统能控的定义。(3分)2已知系统,判定该系统是否完全能观?(5分)解1.答:若存在控制向量序列,时系统从第步的状态开始,在第步达到零状态,即,其中是大于0的有限数,那么就称此系统在第步上是能控的。若对每一个,系统的所有状态都是能控的,就称系统是状态完全能控的,简称能控。…..….…….(3分)2.………..……….(1分)……..……….(1分)………………..……….(1分),所以该系统不完全能观……..….…….(2分)三、已知系统1、2的传递函数分别为求两系统串联后系统的最小实现。(8分)解…..….…….(5分)最小实现为…..….…….(3分)四、将下列状态方程化为能控标准形。(8分)解……..…………….…….(1分)……..…………..…….…….(1分)……..………….…..…….…….(1分)……..………….…...…….…….(1分)..………….…...…….…….(1分)………….…...…….…….(1分)……….…...…….…….(1分)……….…...…….…….(1分)五、利用李亚普诺夫第一方法判定系统的稳定性。(8分)解…………...………….…….(3分)特征根…………...…...…….…….(3分)均具有负实部,系统在原点附近一致渐近稳定…...…….…….(2分)六、利用李雅普诺夫第二方法判断系统是否为大范围渐近稳定:(8分)解…………...………….…….(1分)………...………….…….(1分)………...……………….…….(1分)...……………….…….(1分)………...(1分)正定,因此系统在原点处是大范围渐近稳定的.………(1分)七、已知系统传递函数阵为试判断该系统能否用状态反馈和输入变换实现解耦控制。(6分)解:(2分),(2分)非奇异,可实现解耦控制。(2分)八、给定系统的状态空间表达式为,设计一个具有特征值为-1,-1,-1的全维状态观测器。(8分)解:方法11分--2分又因为1分列方程2分1分观测器为1分方法21分2分1分2分1分观测器为1分九解,………………..(1分)…………..……….(1分)………..……….(1分)……….…(1分)……….……….(2分)……………..……….(2分)《现代控制理论》复习题1一、(10分,每小题2分)试判断以下结论的正确性,若结论是正确的,则在其左边的括号里打√,反之打×。(√)1.由一个状态空间模型可以确定惟一一个传递函数。(×)2.若一个对象的连续时间状态空间模型是能控的,则其离散化状态空间模型也一定是能控的。(×)3.对一个给定的状态空间模型,若它是状态能控的,则也一定是输出能控的。(√)4.对系统,其Lyapunov意义下的渐近稳定性和矩阵A的特征值都具有负实部是一致的。(√)5.根据线性二次型最优控制问题设计的最优控制系统一定是渐近稳定的。二、(15分)考虑由下式确定的系统:试求其状态空间实现的能控标准型、能观标准型和对角线标准型,并画出能控标准型的状态变量图。解:能控标准形为能观测标准形为对角标准形为三、(10分)在线性控制系统的分析和设计中,系统的状态转移矩阵起着很重要的作用。对系统求其状态转移矩阵。解:解法1。容易得到系统状态矩阵A的两个特征值是,它们是不相同的,故系统的矩阵A可以对角化。矩阵A对应于特征值的特征向量是取变换矩阵,则因此,从而,解法2。拉普拉斯方法由于故解法3。凯莱-哈密尔顿方法将状态转移矩阵写成系统矩阵的特征值是-1和-2,故解以上线性方程组,可得因此,四、(15分)已知对象的状态空间模型,是完全能观的,请画出观测器设计的框图,并据此给出观测器方程,观测器设计方法。解观测器设计的框图:观测器方程:其中:是观测器的维状态,L是一个n×p维的待定观测器增益矩阵。观测器设计方法:由于因此,可以利用极点配置的方法来确定矩阵L,使得具有给定的观测器极点。具体的方法有:直接法、变换法、爱克曼公式。五、(15分)对于一个连续时间线性定常系统,试叙述Lyapunov稳定性定理,并举一个二阶系统例子说明该定理的应用。解连续时间线性时不变系统的李雅普诺夫稳定性定理:线性时不变系统在平衡点处渐近稳定的充分必要条件是:对任意给定的对称正定矩阵Q,李雅普诺夫矩阵方程有惟一的对称正定解P。在具体问题分析中,可以选取Q=I。考虑二阶线性时不变系统:原点是系统的惟一平衡状态。求解以下的李雅普诺夫矩阵方程其中的未知对称矩阵将矩阵A和P的表示式代入李雅普诺夫方程中,可得进一步可得联立方程组从上式解出、和,从而可得矩阵根据塞尔维斯特方法,可得故矩阵P是正定的。因此,系统在原点处的平衡状态是大范围渐近稳定的。六、(10分)已知被控系统的传递函数是试设计一个状态反馈控制律,使得闭环系统的极点为-1±j。解系统的状态空间模型是将控制器代入到所考虑系统的状态方程中,得到闭环系统状态方程该闭环系统的特征方程是期望的闭环特征方程是通过可得从上式可解出因此,要设计的极点配置状态反馈控制器是七、(10分)证明:等价的状态空间模型具有相同的能控性。证明对状态空间模型它的等价状态空间模型具有形式其中:T是任意的非奇异变换矩阵。利用以上的关系式,等价状态空间模型的能控性矩阵是由于矩阵T是非奇异的,故矩阵,和具有相同的秩,从而等价的状态空间模型具有相同的能控性。八、(15分)在极点配置是控制系统设计中的一种有效方法,请问这种方法能改善控制系统的哪些性能?对系统性能是否也可能产生不利影响?如何解决?解:极点配置可以改善系统的动态性能,如调节时间、峰值时间、振荡幅度。极点配置也有一些负面的影响,特别的,可能使得一个开环无静差的系统通过极点配置后,其闭环系统产生稳态误差,从而使得系统的稳态性能变差。改善的方法:针对阶跃输入的系统,通过引进一个积分器来消除跟踪误差,其结构图是构建增广系统,通过极点配置方法来设计增广系统的状态反馈控制器,从而使得闭环系统不仅保持期望的动态性能,而且避免了稳态误差的出现。《现代控制理论》复习题2一、(10分,每小题2分)试判断以下结论的正确性,若结论是正确的,则在其左边的括号里打√,反之打×。(×)1.对一个系统,只能选取一组状态变量;(√)2.由状态转移矩阵可以决定系统状态方程的状态矩阵,进而决定系统的动态特性;(×)3.若传递函数存在零极相消,则对应的状态空间模型描述的系统是不能控不能观的;(×)4.若一个系统是李雅普诺夫意义下稳定的,则该系统在任意平衡状态处都是稳定的;(√)5.状态反馈不改变系统的能控性。二、(20分)已知系统的传递函数为(1)采用串联分解方式,给出其状态空间模型,并画出对应的状态变量图;(2)采用并联分解方式,给出其状态空间模型,并画出对应的状态变量图。答:(1)将G(s)写成以下形式:这相当于两个环节和串连,它们的状态空间模型分别为:和由于,故可得给定传递函数的状态空间实现是:将其写成矩阵向量的形式,可得:对应的状态变量图为:串连分解所得状态空间实现的状态变量图(2)将G(s)写成以下形式:它可以看成是两个环节和的并联,每一个环节的状态空间模型分别为:和由此可得原传递函数的状态空间实现:进一步写成状态向量的形式,可得:对应的状态变量图为:并连分解所得状态空间实现的状态变量图三、(20分)试介绍求解线性定常系统状态转移矩阵的方法,并以一种方法和一个数值例子为例,求解线性定常系统的状态转移矩阵;答:求解状态转移矩阵的方法有:方法一直接计算法:根据状态转移矩阵的定义来直接计算,只适合一些特殊矩阵A。方法二通过线性变换计算状态转移矩阵,设法通过线性变换,将矩阵A变换成对角矩阵或约当矩阵,进而利用方法得到要求的状态转移矩阵。方法三拉普拉斯变换法:。方法四凯莱-哈密尔顿方法根据凯莱-哈密尔顿定理和,可导出具有以下形式:其中的均是时间t的标量函数。根据矩阵A有n个不同特征值和有重特征值的情况,可以分别确定这些系数。举例:利用拉普拉斯变换法计算由状态矩阵所确定的自治系统的状态转移矩阵。由于故四、(10分)解释状态能观性的含义,给出能观性的判别条件,并举例说明之。答:状态能观性的含义:状态能观性反映了通过系统的输出对系统状态的识别能力,对一个零输入的系统,若它是能观的,则可以通过一段时间内的测量输出来估计之前某个时刻的系统状态。状态能观的判别方法:对于n阶系统1.若其能观性矩阵列满秩,则系统完全能观2.若系统的能观格拉姆矩阵非奇异,则系统完全能观。举例:对于系统其能观性矩阵的秩为2,即是列满秩的,故系统是能观的。五、(20分)对一个由状态空间模型描述的系统,试回答:(1)能够通过状态反馈实现任意极点配置的条件是什么?(2)简单叙述两种极点配置状态反馈控制器的设计方法;(3)试通过数值例子说明极点配置状态反馈控制器的设计。答:(1)能够通过状态反馈实现任意极点配置的条件:系统是能控的。(2)极点配置状态反馈控制器的设计方法有直接法、变换法、爱克曼公式法。①直接法验证系统的能控性,若系统能控,则进行以下设计。设状态反馈控制器u=−Kx,相应的闭环矩阵是A−BK,闭环系统的特征多项式为由期望极点可得期望的闭环特征多项式通过让以上两个特征多项式相等,可以列出一组以控制器参数为变量的线性方程组,由这组线性方程可以求出极点配置状态反馈的增益矩阵K。②变换法验证系统的能控性,若系统能控,则进行以下设计。将状态空间模型转化为能控标准型,相应的状态变换矩阵设期望的特征多项式为而能控标准型的特征多项式为所以,状态反馈控制器增益矩阵是(3)采用直接法来说明极点配置状态反馈控制器的设计考虑以下系统设计一个状态反馈控制器,使闭环系统极点为2−和−3。该状态空间模型的能控性矩阵为该能控性矩阵是行满秩的,所以系统能控。设状态反馈控制器将其代入系统状态方程中,得到闭环系统状态方程其特征多项式为由期望的闭环极点−2和−3,可得闭环特征多项式通过可得由此方程组得到因此,要设计的极点配置状态反馈控制器六、(20分)给定系统状态空间模型(1)试问如何判断该系统在李雅普诺夫意义下的稳定性?(2)试通过一个例子说明您给出的方法;(3)给出李雅普诺夫稳定性定理的物理解释。答:(1)给定的系统状态空间模型是一个线性时不变系统,根据线性时不变系统稳定性的李雅普诺夫定理,该系统渐近稳定的充分必要条件是:对任意给定的对称正定矩阵Q,矩阵方程有一个对称正定解矩阵P。因此,通过求解矩阵方程,若能得到一个对称正定解矩阵P,则系统是稳定的;若得不到对称正定解矩阵P,则系统是不稳定的。一般的,可以选取Q=I。(2)举例:考虑由以下状态方程描述的二阶线性时不变系统:原点是该系统的惟一平衡状态。求解李雅普诺夫方程:,其中的未知矩阵将矩阵A和P的表示式代入李雅普诺夫方程中,可得为了计算简单,选取Q=2I,则从以上矩阵方程可得:求解该线性方程组,可得:即判断可得矩阵P是正定的。因此该系统是渐近稳定的。(3)李雅普诺夫稳定性定理的物理意义:针对一个动态系统和确定的平衡状态,通过分析该系统运动过程中能量的变化来判断系统的稳定性。具体地说,就是构造一个反映系统运动过程中能量变化的虚拟能量函数,沿系统的运动轨迹,通过该能量函数关于时间导数的取值来判断系统能量在运动过程中是否减少,若该导数值都是小于零的,则表明系统能量随着时间的增长是减少的,直至消耗殆尽,表明在系统运动上,就是系统运动逐步趋向平缓,直至在平衡状态处稳定下来,这就是李雅普诺夫意义下的稳定性《现代控制理论》复习题3一、(10分,每小题2分)试判断以下结论的正确性,若结论是正确的,则在其左边的括号里打√,反之打×。(×)1.具有对角型状态矩阵的状态空间模型描述的系统可以看成是由多个一阶环节串联组成的系统;(×)2.要使得观测器估计的状态尽可能快地逼近系统的实际状态,观测器的极点应该比系统极点快10倍以上;(×)3.若传递函数存在零极相消,则对应状态空间模型描述的系统是不能控的;(√)4.若线性系统是李雅普诺夫意义下稳定的,则它是大范围渐近稳定的;(√)5.若线性二次型最优控制问题有解,则可以得到一个稳定化状态反馈控制器。二、(20分)(1)如何由一个传递函数来给出其对应的状态空间模型,试简述其解决思路?(2)给出一个二阶传递函数的两种状态空间实现。解:(1)单输入单输出线性时不变系统传递函数的一般形式是若,则通过长除法,传递函数总可以转化成将分解成等效的两个特殊环节的串联:可得一个状态空间实现串联法其思想是将一个n阶的传递函数分解成若干低阶传递函数的乘积,然后写出这些低阶传递函数的状态空间实现,最后利用串联关系,写出原来系统的状态空间模型。并联法其的思路是把一个复杂的传递函数分解成若干低阶传递函数的和,然后对每个低阶传递函数确定其状态空间实现,最后根据并联关系给出原来传递函数的状态空间实现。(2)方法一:将重新写成下述形式:每一个环节的状态空间模型分别为:又因为,所以因此,若采用串联分解方式,则系统的状态空间模型为:方法二:将重新写成下述形式:每一个环节的状态空间模型分别为:又由于因此,若采用并联分解方式,则系统的状态空间模型为:方法三:将重新写成下述形式:则系统的状态空间模型为:评分标准:问题(1)10分,由一个传递函数转换为状态空间模型思路清晰,方法正确10分;问题(2)10分,两种状态空间实现方法各5分。三、(20分)(1)试问状态转移矩阵的意义是什么?(2)状态转移矩阵是否包含了对应自治系统的全部信息?(3)介绍两种求解线性定常系统状态转移矩阵的方法;(4)计算系统的状态转移矩阵。解:(1)状态转移矩阵的意义是决定状态沿着轨线从初始状态转移到下一个状态的规律,即初始状态x0在状态转移矩阵Φ(t,t0)的作用下,t0时刻的初始状态x0经过时间t−t0后转移到了时刻t的状态x(t)。(2)状态转移矩阵包含了对应自治系统的全部信息;对于自治系统(3)拉普拉斯变换法、凯莱-哈密尔顿法、线性变换法、直接计算法。方法一直接计算法根据定义,我们已经知道上式中的矩阵级数总是收敛的,故可以通过计算该矩阵级数的和来得到所要求的状态转移矩阵。方法二线性变换法如果矩阵A是一个可对角化的矩阵,即存在一个非奇异矩阵T,使得则方法三拉普拉斯变换法方法四凯莱-哈密尔顿法解一个线性方程组其系数矩阵的行列式是著名的范德蒙行列式,当λ1,λ2,,λn互不相同时,行列式的值不为零,从而从方程组可得惟一解α0(t),α1(t),,αn−1(t)。由可得状态转移矩阵。(4)方法一:线性变换法,容易得到系统状态矩阵A的两个特征值是,它们是不相同的,故系统的矩阵A可以对角化。矩阵A对应及特征值的特征向量是取变换矩阵因此,从而,方法二:拉普拉斯变换法,由于故方法二:凯莱-哈密尔顿法将状态转移矩阵写成系统矩阵的特征值是-1和-2,故解以上线性方程组,可得因此,评分标准:每个问题5分。问题(1)状态转移矩阵的意义叙述完整5分;问题(2)判断正确5分;问题(3)给出两种求解线性定常系统状态转移矩阵的方法5分;问题(3)方法和结果正确5分。四、(20分)(1)解释系统状态能控性的含义;(2)给出能控性的判别条件,并通过一个例子来说明该判别条件的应用;(3)若一个系统是能控的,则可以在任意短时间内将初始状态转移到任意指定的状态,这一控制效果在实际中能实现吗?为什么?解:(1)对一个能控的状态,总存在一个控制律,使得在该控制律作用下,系统从此状态出发,经有限时间后转移到零状态。(2)通过检验能控性判别矩阵是否行满秩来判别线性时不变系统的能控性。若能控性判别矩阵是行满秩的,则系统是能控的。试判别由以下状态方程描述的系统的能控性:系统的能控性判别矩阵由于即矩阵Γc[A,B]不是满秩的,该系统不是状态完全能控的。(3)若一个系统是能控的,则可以在任意短时间内将初始状态转移到任意指定的状态,这一控制效果在实际中难以实现,T越小,则控制律的参数越大,从而导致控制信号的幅值很大,这要求执行器的调节幅度要很大,从而使得在有限时间内完成这一控制作用所需要消耗的能量也很大。由于在实际过程中,执行器的调节幅度总是有限的(如阀门的开度等),能量供应也是有限制的。评分标准:问题(1)系统状态能控性的含义叙述完整6分;问题(2)能控性的判别条件4分,举例3分;问题(3)判断正确3分,原因分析正确4分。五、(20分)(1)能够通过状态反馈实现任意极点配置的条件是什么?(2)已知被控对象的状态空间模型为设计状态反馈控制器,使得闭环极点为−4和−5。(3)极点配置是否会影响系统的稳态性能?若会的话,如何克服?试简单叙述之?解:(1)能够通过状态反馈实现任意极点配置的条件是系统状态能控。(2)由于给出的状态空间模型是能控标准形,因此,系统是能控的。根据所期望的闭环极点是−4和−5,可得期望的闭环特征多项式是因此,所要设计的状态反馈增益矩阵是相应的闭环系统状态矩阵是闭环传递函数是评分标准:问题(1)给出通过状态反馈实现任意极点配置的条件6分;问题(2)状态反馈控制器设计方法正确7分;问题(3)判断正确3分,叙述克服方法4分。六、(10分)(1)叙述线性时不变系统的李雅普诺夫稳定性定理;(2)利用李雅普诺夫稳定性定理判断系统的稳定性。解:(1)连续时间线性时不变系统的李雅普诺夫稳定性定理;线性时不变系统在平衡点处渐近稳定的充分必要条件是:对任意给定的对称正定矩阵Q,存在一个对称正定矩阵P,使得矩阵方程成立。离散时间线性时不变系统的李雅普诺夫稳定性定理;线性时不变系统在平衡点处渐近稳定的充分必要条件是:对任意给定的对称正定矩阵Q,矩阵方程存在对称正定解矩阵P。(2)原点是系统的惟一平衡状态。求解以下的李雅普诺夫方程其中的未知对称矩阵将矩阵A和P的表示式代入李雅普诺夫方程中,可得进一步将以上矩阵方程展开,可得联立方程组应用线性方程组的求解方法,可从上式解出p11、p12和p22,从而可得矩阵P:根据矩阵正定性判别的塞尔维斯特方法,可得故矩阵P是正定的。因此,系统在原点处的平衡状态是大范围渐近稳定的。评分标准:问题(1)完整叙述线性时不变系统的李雅普诺夫稳定性定理5分;问题(2)稳定性判断方法和结果正确5分。《现代控制理论》复习题4一、(10分,每小题1分)试判断以下结论的正确性,若结论是正确的,则在其左边的括号里打√,反之打×。(√)1.相比于经典控制理论,现代控制理论的一个显著优点是可以用时域法直接进行系统的分析和设计。(√)2.传递函数的状态空间实现不唯一的一个主要原因是状态变量选取不唯一。(×)3.状态变量是用于完全描述系统动态行为的一组变量,因此都是具有物理意义。(×)4.输出变量是状态变量的部分信息,因此一个系统状态能控意味着系统输出能控。(√)5.等价的状态空间模型具有相同的传递函数。(×)6.互为对偶的状态空间模型具有相同的能控性。(×)7.一个系统的平衡状态可能有多个,因此系统的李雅普诺夫稳定性及系统受扰前所处的平衡位置无关。(√)8.若一线性定常系统的平衡状态是渐近稳定的,则从系统的任意一个状态出发的状态轨迹随着时间的推移都将收敛到该平衡状态。(×)9.反馈控制可改变系统的稳定性、动态性能,但不改变系统的能控性和能观性。(×)10.如果一个系统的李雅普诺夫函数确实不存在,那么我们就可以断定该系统是不稳定的。二、(15分)建立一个合理的系统模型是进行系统分析和设计的基础。已知一单输入单输出线性定常系统的微分方程为:(1)采用串联分解方式,给出其状态空间模型,并画出对应的状态变量图;(7分+3分)(2)归纳总结上述的实现过程,试简述由一个系统的n阶微分方程建立系统状态空间模型的思路。(5分)解:(1)方法一:由微分方程可得令每一个环节的状态空间模型分别为:又因为y1=u1,所以因此,采用串联分解方式可得系统的状态空间模型为:对应的状态变量图为:方法二:由微分方程可得每一个环节的状态空间模型分别为:又因为y1=u1,所以因此,采用串联分解方式可得系统的状态空间模型为:对应的状态变量图为(2)单输入单输出线性时不变系统传递函数的一般形式是若bn≠0,则通过长除法,传递函数G(s)总可以转化成将传递函数c(s)/a(s)分解成若干低阶(1阶)传递函数的乘积,然后根据能控标准型或能观标准型写出这些低阶传递函数的状态空间实现,最后利用串联关系,写出原来系统的状态空间模型。三、(10分)系统的状态转移矩阵不仅包含了对应自治系统的全部信息,而且在线性控制系统的分析、设计中具有重要的作用。已知系统的状态转移矩阵如下:(1)试给出对应自治系统的全部信息;(5分)(2)试列举状态转移矩阵的基本性质,并简述其意义。(5分)解:(1)一个自治系统的全部信息由其状态矩阵A描述,可由状态转移矩阵Ф(t)确定一线性定常系统的状态矩阵A。对任意的t,满足,而对等式取t=0,并利用Ф(0)=I,则可得状态矩阵A(2)状态转移矩阵的基本性质:,包含对应系统自由运动的全部信息;对任意的t和s,满足Ф(t+s)=Ф(t)·Ф(s),即利用状态转移矩阵可以从任意指定的初始时刻t0的状态x(t0)出发,以确定任意时刻t处的状态x(t);对任意的t,满足Ф(t)-1=Ф(-t),即可以由当前的状态信息确定以前的状态信息。四、(20分)实际被控系统通常是连续时间系统,但计算机控制却是一种基于离散模型的控制,因此一种方法是对连续时间系统做离散化。那么请问(1)一个能控能观的连续时间系统,其离散化后的状态空间模型是否仍然保持能控能观性?(2分)(2)以如下线性定常系统为例:说明你的理由以支持你的观点。(10分)(3)令采样周期T=π/2,初始状态为,求u(k),使得(2)中离散化状态空间模型在第2个采样时刻转移到原点。(8分)解:(1)不一定。(2)连续系统的状态空间模型是能控标准形,故系统是能控的。将状态方程离散化,设采样周期为T,系统的状态转移矩阵为根据,可得到离散化状态方程,此时因此,离散化状态空间模型为则离散化系统的能控性矩阵为所以,当sin2T=2sinT,即T=kπ(k=0,1,2,…)时,离散化系统是不能控的;当T≠kπ(k=0,1,2…)时,离散化系统是能控的。同理,离散化系统的能观性矩阵为所以,sinT=0,即T=kπ(k=0,1,2,…)时,离散化系统是不能观的;当T≠kπ(k=0,1,2…)时,离散化系统是能观的。因此,一个能控能观的连续时间系统,其离散化后的状态空间模型不一定仍然是能控能观的,主要取决及采样周期T的选择。(3)当采样周期T=π/2时,离散化状态空间模型为可得将式(a)代入式(b)得即整理可得五、(10分)证明:状态反馈不改变被控系统的能控性。证明一:采用能控性定义证明,具体见教材P125.证明二:考虑被控系统(A,B,C,D),则状态反馈后得到闭环系统SK,其状态空间模型为开环系统S0的能控性矩阵为闭环系统SK的能控性矩阵为由于以此类推,总可以写成的线性组合。因此,存在一个适当非奇异的矩阵U,使得由此可得:若,即有n个线性无关的列向量,则也有n个线性无关的列向量,故,命题得证。六、(20分)双足直立机器人可以近似为一个倒立摆装置,如图所示。假设倒立摆系统的一个平衡点线性化状态空间模型如下:其中,状态变量,y是小车的位移,θ是摆杆的偏移角,u是作用在小车上的动力。试回答(1)双足直立机器人在行走过程中被人推了一把而偏离垂直面,那么根据倒立摆原理,请问双足直立机器人在该扰动推力消失后还能回到垂直面位置吗?(2分)(2)如果不能,那么请你从控制学的角度,给出两种能够使双足直立机器人在扰动推力消失后回到垂直面位置的方法。(4分)(3)请结合倒立摆模型,简单叙述双足直立机器人能控性的含义。(4分)(4)在状态反馈控制器设计中,需要用到系统的所有状态信息,但根据倒立摆原理,可测量的状态信息只有水平移动的位移y,那么你有什么方法可以实现这个状态反馈控制器的设计?你所用方法的条件是什么?依据是什么?请结合倒立摆模型,给出你使用方法的实现过程。(10分)答:(1)不能,因为倒立摆是一个开环不稳定系统;(2)对于给定的倒立摆模型,是一线性时不变系统,因此可以用如下方法使双足直立机器人在扰动推力消失后回到垂直面位置(即稳定化控制器设计):极点配置方法;基于李雅普诺夫稳定性理论的直接设计法;线性二次型最优控制器设计方法。(3)当双足直立机器人由于受初始扰动而稍稍偏离垂直面位置时,总可以通过对其施加一个适当的外力,使得将它推回到垂直面位置(将非零的初始状态转移到零状态)。(4)如果被控系统是状态能观的,那么通过设计(降维)状态观测器将不可测量状态变量观测输出,再应用线性定常系统的分离性原理,实现状态反馈控制器设计。结合倒立摆模型,则检验上述状态空间模型的能观性;系统完全能观,则对系统设计状态观测器(或对不可测量子系统和设计降维状态观测器);应用线性定常系统的分离性原理,将状态反馈控制器u=-Kx中的状态x替换为观测状态从实现基于状态观测器的状态反馈控制器设计。使用方法的条件是:系统完全能观或不可观子系统是渐进稳定的;使用方法的依据是:线性定常系统的分离性原理。七、(15分)考虑线性定常系统和性能指标如下:其中实数r>0为性能指标可调参数。试回答(1)当参数r固定时,求使得性能指标J最小化的最优状态反馈控制器。(10分)(2)当参数r增大时,分析闭环系统性能的变化。(5分)解:(1)系统性能指标J等价为令正定对称矩阵代入黎卡提矩阵方程可得:通过矩阵计算,得到:进一步,可得下面三个代数方程:据此,可解得:(这里取正值,若取负值,则相应的矩阵P不是正定的),使得性能指标J最小化的最优状态反馈控制器为:(2)将上述最优控制律代入系统,得最优闭环系统状态矩阵则闭环系统特征多项式为可得最优闭环极点为其中。随着参数r的增大,闭环极点越来越靠近虚轴,从而系统的响应速度变慢。事实上,从性能指标也可以看出,参数r的增大表明控制能量约束的加权越来越大,希望用较小的能量来实现系统的控制,显然由此导致的结果就是系统速度变慢。现代控制理论1.经典-现代控制区别:经典控制理论中,对一个线性定常系统,可用常微分方程或传递函数加以描述,可将某个单变量作为输出,直接和输入联系起来;现代控制理论用状态空间法分析系统,系统的动态特性用状态变量构成的一阶微分方程组描述,不再局限于输入量,输出量,误差量,为提高系统性能提供了有力的工具.可以应用于非线性,时变系统,多输入-多输出系统以及随机过程.2.实现-描述由描述系统输入-输出动态关系的运动方程式或传递函数,建立系统的状态空间表达式,这样问题叫实现问题.实现是非唯一的.3.对偶原理系统=∑1(A1,B1,C1)和=∑2(A2,B2,C2)是互为对偶的两个系统,则∑1的能控性等价于∑2的能观性,∑1的能观性等价于∑2的能控性.或者说,若∑1是状态完全能控的(完全能观的),则∑2是状态完全能观的(完全能控的).对偶系统的传递函数矩阵互为转置4.对线性定常系统∑0=(A,B,C),状态观测器存在的充要条件是的不能观子系统为渐近稳定第一章控制系统的状态空间表达式1.状态方程:由系统状态变量构成的一阶微分方程组2.输出方程:在指定系统输出的情况下,该输出及状态变量间的函数关系式3.状态空间表达式:状态方程和输出方程总合,构成对一个系统完整动态描述4.友矩阵:主对角线上方元素均为1:最后一行元素可取任意值;其余元素均为05.非奇异变换:x=Tz,z=T-1x;z=T-1ATz+T-1Bu,y=CTz+Du.T为任意非奇异阵(变换矩阵),空间表达式非唯一6.同一系统,经非奇异变换后,特征值不变;特征多项式的系数为系统的不变量第二章控制系统状态空间表达式的解1.状态转移矩阵:eAt,记作Φ(t)2.线性定常非齐次方程的解:x(t)=Φ(t)x(0)+∫t0Φ(t-τ)Bu(τ)dτ第三章线性控制系统的能控能观性1.能控:使系统由某一初始状态x(t0),转移到指定的任一终端状态x(tf),称此状态是能控的.若系统的所有状态都是能控的,称系统是状态完全能控2.系统的能控性,取决于状态方程中系统矩阵A和控制矩阵b3.一般系统能控性充要条件:(1)在T-1B中对应于相同特征值的部分,它及每个约旦块最后一行相对应的一行元素没有全为0.(2)T-1B中对于互异特征值部分,它的各行元素没有全为0的4.在系统矩阵为约旦标准型的情况下,系统能观的充要条件是C中对应每个约旦块开头的一列的元素不全为05.约旦标准型对于状态转移矩阵的计算,可控可观性分析方便;状态反馈则化为能控标准型;状态观测器则化为能观标准型6.最小实现问题:根据给定传递函数阵求对应的状态空间表达式,其解无穷多,但其中维数最小的那个状态空间表达式是最常用的.第五章线性定常系统综合1.状态反馈:将系统的每一个状态变量乘以相应的反馈系数,然后反馈到输入端及参考输入相加形成控制律,作为受控系统的控制输入.K为r*n维状态反馈系数阵或状态反馈增益阵2.输出反馈:采

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论