人教A版高中数学(必修第二册)同步培优讲义专题7.3 复数的四则运算(重难点题型精讲)(原卷版)_第1页
人教A版高中数学(必修第二册)同步培优讲义专题7.3 复数的四则运算(重难点题型精讲)(原卷版)_第2页
人教A版高中数学(必修第二册)同步培优讲义专题7.3 复数的四则运算(重难点题型精讲)(原卷版)_第3页
人教A版高中数学(必修第二册)同步培优讲义专题7.3 复数的四则运算(重难点题型精讲)(原卷版)_第4页
人教A版高中数学(必修第二册)同步培优讲义专题7.3 复数的四则运算(重难点题型精讲)(原卷版)_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题7.3复数的四则运算(重难点题型精讲)1.复数的加法运算及其几何意义(1)复数的加法法则

设SKIPIF1<0=a+bi,SKIPIF1<0=c+di(a,b,c,dR)是任意两个复数,那么SKIPIF1<0+SKIPIF1<0=(a+bi)+(c+di)=(a+c)+(b+d)i.(2)复数的加法满足的运算律

对任意SKIPIF1<0,SKIPIF1<0,SKIPIF1<0∈C,有

①交换律:SKIPIF1<0+SKIPIF1<0=SKIPIF1<0+SKIPIF1<0;

②结合律:(SKIPIF1<0+SKIPIF1<0)+SKIPIF1<0=SKIPIF1<0+(SKIPIF1<0+SKIPIF1<0).(3)复数加法的几何意义在复平面内,设SKIPIF1<0=a+bi,SKIPIF1<0=c+di(a,b,c,d∈R)对应的向量分别为SKIPIF1<0,SKIPIF1<0,则SKIPIF1<0=(a,b),SKIPIF1<0=(c,d).以SKIPIF1<0,SKIPIF1<0对应的线段为邻边作平行四边形SKIPIF1<0(如图所示),则由平面向量的坐标运算,可得SKIPIF1<0=SKIPIF1<0+SKIPIF1<0=(a,b)+(c,d)=(a+c,b+d),即z=(a+c)+(b+d)i,即对角线OZ对应的向量就是与复数(a+c)+(b+d)i对应的向量.2.复数的减法运算及其几何意义(1)复数的减法法则类比实数减法的意义,我们规定,复数的减法是加法的逆运算,即把满足(c+di)+(x+yi)=a+bi的复数x+yi(x,y∈R)叫做复数a+bi(a,b∈R)减去复数c+di(c,d∈R)的差,记作(a+bi)-(c+di).

根据复数相等的定义,有c+x=a,d+y=b,因此x=a-c,y=b-d,所以x+yi=(a-c)+(b-d)i,即(a+bi)-(c+di)=(a-c)+(b-d)i.这就是复数的减法法则.(2)复数减法的几何意义两个复数SKIPIF1<0=a+bi,SKIPIF1<0=c+di(a,b,c,d∈R)在复平面内对应的向量分别是SKIPIF1<0,SKIPIF1<0,那么这两个复数的差SKIPIF1<0-SKIPIF1<0对应的向量是SKIPIF1<0-SKIPIF1<0,即向量SKIPIF1<0.如果作SKIPIF1<0=SKIPIF1<0,那么点Z对应的复数就是SKIPIF1<0-SKIPIF1<0(如图所示).

这说明两个向量SKIPIF1<0与SKIPIF1<0的差SKIPIF1<0就是与复数(a-c)+(b-d)i对应的向量.因此,复数的减法可以按照向量的减法来进行,这是复数减法的几何意义.3.复数的乘法运算(1)复数的乘法法则

设SKIPIF1<0=a+bi,SKIPIF1<0=c+di(a,b,c,d∈R)是任意两个复数,那么它们的积(a+bi)(c+di)=ac+bci+adi+SKIPIF1<0=(ac-bd)+(ad+bc)i.

可以看出,两个复数相乘,类似于两个多项式相乘,只要在所得的结果中把SKIPIF1<0换成-1,并且把实部与虚部分别合并即可.(2)复数乘法的运算律对于任意SKIPIF1<0,SKIPIF1<0,SKIPIF1<0∈C,有

①交换律:SKIPIF1<0SKIPIF1<0=SKIPIF1<0SKIPIF1<0;

②结合律:(SKIPIF1<0SKIPIF1<0)SKIPIF1<0=SKIPIF1<0(SKIPIF1<0SKIPIF1<0);

③分配律:SKIPIF1<0(SKIPIF1<0+SKIPIF1<0)=SKIPIF1<0SKIPIF1<0+SKIPIF1<0SKIPIF1<0.

在复数范围内,正整数指数幂的运算律仍然成立.即对于任意复数z,SKIPIF1<0,SKIPIF1<0和正整数m,n,有SKIPIF1<0SKIPIF1<0=SKIPIF1<0,SKIPIF1<0=SKIPIF1<0,SKIPIF1<0=SKIPIF1<0.4.复数的除法(1)定义

我们规定复数的除法是乘法的逆运算.即把满足(c+di)(x+yi)=a+bi(c+di≠0)的复数x+yi叫做复数a+bi除以复数c+di的商,记作(a+bi)÷(c+di)或SKIPIF1<0(a,b,c,d∈R,且c+di≠0).(1)复数的除法法则(a+bi)÷(c+di)=SKIPIF1<0=SKIPIF1<0=SKIPIF1<0=SKIPIF1<0+SKIPIF1<0i(a,b,c,d∈R,且c+di≠0).

由此可见,两个复数相除(除数不为0),所得的商是一个确定的复数.5.|z-z0|(z,z0∈C)的几何意义

设复数SKIPIF1<0=a+bi,SKIPIF1<0=c+di(a,b,c,d∈R)在复平面内对应的点分别是SKIPIF1<0(a,b),SKIPIF1<0(c,d),则|​​​​​​​SKIPIF1<0SKIPIF1<0|=SKIPIF1<0,又复数SKIPIF1<0-SKIPIF1<0=(a-c)+(b-d)i,则|SKIPIF1<0-SKIPIF1<0|=SKIPIF1<0.

故|​​​​​​​SKIPIF1<0SKIPIF1<0|=|SKIPIF1<0-SKIPIF1<0|,即|SKIPIF1<0-SKIPIF1<0|表示复数SKIPIF1<0,SKIPIF1<0在复平面内对应的点之间的距离.6.复数范围内实数系一元二次方程的根

若一元二次方程SKIPIF1<0+bx+c=0(a≠0,且a,b,c∈R),则当SKIPIF1<0>0时,方程有两个不相等的实根SKIPIF1<0SKIPIF1<0,SKIPIF1<0=SKIPIF1<0;

当SKIPIF1<0=0时,方程有两个相等的实根SKIPIF1<0=SKIPIF1<0=-SKIPIF1<0;

当SKIPIF1<0<0时,方程有两个虚根SKIPIF1<0=SKIPIF1<0,SKIPIF1<0=SKIPIF1<0,且两个虚数根互为共轭复数.7.复数运算的常用技巧(1)复数常见运算小结论①SKIPIF1<0;②SKIPIF1<0;③SKIPIF1<0;④SKIPIF1<0;⑤SKIPIF1<0.(2)常用公式SKIPIF1<0;SKIPIF1<0;SKIPIF1<0.【题型1复数的加、减运算】【方法点拨】两个复数相加(减),就是把两个复数的实部相加(减),虚部相加(减).复数的减法是加法的逆运算,两个复数相减,也可以看成是加上这个复数的相反数.当多个复数相加(减)时,可将这些复数的所有实部相加(减),所有虚部相加(减).【例1】(2022秋·贵州毕节·高三阶段练习)已知z1=1+i,z2=2−2A.4 B.5+3i C.4−3i【变式1-1】(2022秋·陕西延安·高三阶段练习)若z−3+5i=8−2i,则zA.5−3i B.11−7i C.8+7【变式1-2】(2022春·广西桂林·高一期末)1+i+−2+2A.−1+3i B.1+i C.−1+【变式1-3】(2023·山西大同·大同市模拟预测)若复数z满足2z+z+3z−A.12+C.2+2i D.【题型2复数加、减法的几何意义的应用】【方法点拨】(1)向量加、减运算的平行四边形法则和三角形法则是复数加、减法几何意义的依据.(2)利用向量的加法“首尾相接”和减法“指向被减向量”的特点,在三角形内可求得第三个向量及其对应的复数.【例2】(2022春·北京西城·高一阶段练习)在复平面内,O为原点,四边形OABC是复平面内的平行四边形,且A,B,C三点对应的复数分别为z1,z2,z3,若z1=1, z3=−2+A.1+i B.1-i C.-1+i D.-1-i【变式2-1】(2022·高一课时练习)在平行四边形ABCD中,若A,C对应的复数分别为-1+i和-4-3i,则该平行四边形的对角线AC的长度为(

)A.5 B.5 C.25 D.10【变式2-2】(2022·全国·高一专题练习)如图在复平面上,一个正方形的三个顶点对应的复数分别是1+2i,−2+i,0,那么这个正方形的第四个顶点对应的复数为(

).A.3+i B.3−i C.1−3i D.−1+3i【变式2-3】(2022春·高一课时练习)如图,设向量OP,PQ,OQ所对应的复数为z1,z2,z3,那么()A.z1-z2-z3=0B.z1+z2+z3=0C.z2-z1-z3=0D.z1+z2-z3=0【题型3复数的乘除运算】【方法点拨】(1)复数的乘法可以按照多项式的乘法计算,只是在结果中要将SKIPIF1<0换成-1,并将实部、虚部分别合并.(2)复数的除法法则在实际操作中不方便使用,一般将除法写成分式形式,采用分母“实数化”的方法,即将分子、分母同乘分母的共轭复数,使分母成为实数,再计算.【例3】(2023·辽宁·辽宁模拟预测)已知z1+i=7+5i,则A.6−i B.6+i C.3−2【变式3-1】(2023·湖北·校联考模拟预测)在复平面内,复数z对应的点为(−1,1),则z1+i=A.−1+i B.−1−i C.i【变式3-2】(2022春·陕西榆林·高二期中)已知复数z=−1+2i(i为虚数单位)的共轭复数为z,则z⋅iA.-2-i B.-2+i C.2−i D.【变式3-3】(2022秋·河北唐山·高三阶段练习)已知复数z满足z−i=4+3iA.3+3i B.3−3i C.−3+3【题型4虚数单位i的幂运算的周期性】【方法点拨】根据虚数单位i的幂运算的周期性,进行求解即可.【例4】(2022·云南红河·校考模拟预测)已知i为虚数单位,则i20231−iA.−12+12i【变式4-1】(2022春·湖北十堰·高一阶段练习)i2022=(A.−1 B.1 C.−i D.【变式4-2】(2022·全国·高一假期作业)设i是虚数单位,则i+i2A.i+1 B.i−1 C.【变式4-3】1+i1−iA.i B.−i C.22005【题型5解复数方程】【方法点拨】实系数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论