浙江省Q21联盟市级名校2024届中考数学五模试卷含解析_第1页
浙江省Q21联盟市级名校2024届中考数学五模试卷含解析_第2页
浙江省Q21联盟市级名校2024届中考数学五模试卷含解析_第3页
浙江省Q21联盟市级名校2024届中考数学五模试卷含解析_第4页
浙江省Q21联盟市级名校2024届中考数学五模试卷含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省Q21联盟市级名校2024学年中考数学五模试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.计算6m6÷(-2m2)3的结果为()A. B. C. D.2.如图,在矩形ABCD中,AB=2,AD=3,点E是BC边上靠近点B的三等分点,动点P从点A出发,沿路径A→D→C→E运动,则△APE的面积y与点P经过的路径长x之间的函数关系用图象表示大致是()A. B. C. D.3.两个有理数的和为零,则这两个数一定是()A.都是零 B.至少有一个是零C.一个是正数,一个是负数 D.互为相反数4.计算3–(–9)的结果是()A.12 B.–12 C.6 D.–65.若抛物线y=x2-(m-3)x-m能与x轴交,则两交点间的距离最值是()A.最大值2, B.最小值2 C.最大值2 D.最小值26.如果m的倒数是﹣1,那么m2018等于()A.1 B.﹣1 C.2018 D.﹣20187.已知∠BAC=45。,一动点O在射线AB上运动(点O与点A不重合),设OA=x,如果半径为1的⊙O与射线AC有公共点,那么x的取值范围是()A.0<x≤1 B.1≤x< C.0<x≤ D.x>8.某小组7名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这组数据,以下说法正确的是()劳动时间(小时)33.544.5人数1132A.中位数是4,众数是4 B.中位数是3.5,众数是4C.平均数是3.5,众数是4 D.平均数是4,众数是3.59.如图,在Rt△ABC中,∠C=90°,BC=2,∠B=60°,⊙A的半径为3,那么下列说法正确的是()A.点B、点C都在⊙A内 B.点C在⊙A内,点B在⊙A外C.点B在⊙A内,点C在⊙A外 D.点B、点C都在⊙A外10.下列所述图形中,是轴对称图形但不是中心对称图形的是()A.线段 B.等边三角形 C.正方形 D.平行四边形11.计算2a2+3a2的结果是()A.5a4 B.6a2 C.6a4 D.5a212.下列图形中,可以看作中心对称图形的是()A. B. C. D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.一个扇形的弧长是,它的面积是,这个扇形的圆心角度数是_____.14.小李和小林练习射箭,射完10箭后两人的成绩如图所示,通常新手的成绩不太稳定,根据图中的信息,估计这两人中的新手是_____.15.如图,△ABC≌△ADE,∠EAC=40°,则∠B=_______°.16.如图,O是坐标原点,菱形OABC的顶点A的坐标为(﹣3,4),顶点C在x轴的负半轴上,函数y=(x<0)的图象经过顶点B,则k的值为_____.17.如图,在平行四边形ABCD中,过对角线AC与BD的交点O作AC的垂线交于点E,连接CE,若AB=4,BC=6,则△CDE的周长是______.18.如果a是不为1的有理数,我们把称为a的差倒数如:2的差倒数是,-1的差倒数是,已知,是的差倒数,是的差倒数,是的差倒数,…,依此类推,则___________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在平面直角坐标系中,直线:与轴,轴分别交于,两点,且点,点在轴正半轴上运动,过点作平行于轴的直线.(1)求的值和点的坐标;(2)当时,直线与直线交于点,反比例函数的图象经过点,求反比例函数的解析式;(3)当时,若直线与直线和(2)反比例函数的图象分别交于点,,当间距离大于等于2时,求的取值范围.20.(6分)水龙头关闭不紧会造成滴水,小明用可以显示水量的容器做图①所示的试验,并根据试验数据绘制出图②所示的容器内盛水量W(L)与滴水时间t(h)的函数关系图象,请结合图象解答下列问题:容器内原有水多少?求W与t之间的函数关系式,并计算在这种滴水状态下一天的滴水量是多少升?图①图②21.(6分)如图,已知在梯形ABCD中,,P是线段BC上一点,以P为圆心,PA为半径的与射线AD的另一个交点为Q,射线PQ与射线CD相交于点E,设.(1)求证:;(2)如果点Q在线段AD上(与点A、D不重合),设的面积为y,求y关于x的函数关系式,并写出定义域;(3)如果与相似,求BP的长.22.(8分)庞亮和李强相约周六去登山,庞亮从北坡山脚C处出发,以24米/分钟的速度攀登,同时,李强从南坡山脚B处出发.如图,已知小山北坡的坡度,山坡长为240米,南坡的坡角是45°.问李强以什么速度攀登才能和庞亮同时到达山顶A?(将山路AB、AC看成线段,结果保留根号)23.(8分)路边路灯的灯柱垂直于地面,灯杆的长为2米,灯杆与灯柱成角,锥形灯罩的轴线与灯杆垂直,且灯罩轴线正好通过道路路面的中心线(在中心线上).已知点与点之间的距离为12米,求灯柱的高.(结果保留根号)24.(10分)如图是8×8的正方形网格,A、B两点均在格点(即小正方形的顶点)上,试在下面三个图中,分别画出一个以A,B,C,D为顶点的格点菱形(包括正方形),要求所画的三个菱形互不全等.25.(10分)如图,在□ABCD中,对角线AC、BD相交于点O,点E在BD的延长线上,且△EAC是等边三角形.(1)求证:四边形ABCD是菱形.(2)若AC=8,AB=5,求ED的长.26.(12分)已知:四边形ABCD是平行四边形,点O是对角线AC、BD的交点,EF过点O且与AB、CD分别相交于点E、F,连接EC、AF.(1)求证:DF=EB;(2)AF与图中哪条线段平行?请指出,并说明理由.27.(12分)九年级学生到距离学校6千米的百花公园去春游,一部分学生步行前往,20分钟后另一部分学生骑自行车前往,设(分钟)为步行前往的学生离开学校所走的时间,步行学生走的路程为千米,骑自行车学生骑行的路程为千米,关于的函数图象如图所示.(1)求关于的函数解析式;(2)步行的学生和骑自行车的学生谁先到达百花公园,先到了几分钟?

参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、D【解题分析】分析:根据幂的乘方计算法则求出除数,然后根据同底数幂的除法法则得出答案.详解:原式=,故选D.点睛:本题主要考查的是幂的计算法则,属于基础题型.明白幂的计算法则是解决这个问题的关键.2、B【解题分析】

由题意可知,当时,;当时,;当时,.∵时,;时,.∴结合函数解析式,可知选项B正确.【题目点拨】考点:1.动点问题的函数图象;2.三角形的面积.3、D【解题分析】解:互为相反数的两个有理数的和为零,故选D.A、C不全面.B、不正确.4、A【解题分析】

根据有理数的减法,即可解答.【题目详解】故选A.【题目点拨】本题考查了有理数的减法,解决本题的关键是熟记减去一个数等于加上这个数的相反数.5、D【解题分析】设抛物线与x轴的两交点间的横坐标分别为:x1,x2,

由韦达定理得:x1+x2=m-3,x1•x2=-m,则两交点间的距离d=|x1-x2|==,∴m=1时,dmin=2.故选D.6、A【解题分析】

因为两个数相乘之积为1,则这两个数互为倒数,如果m的倒数是﹣1,则m=-1,然后再代入m2018计算即可.【题目详解】因为m的倒数是﹣1,所以m=-1,所以m2018=(-1)2018=1,故选A.【题目点拨】本题主要考查倒数的概念和乘方运算,解决本题的关键是要熟练掌握倒数的概念和乘方运算法则.7、C【解题分析】如下图,设⊙O与射线AC相切于点D,连接OD,∴∠ADO=90°,∵∠BAC=45°,∴△ADO是等腰直角三角形,∴AD=DO=1,∴OA=,此时⊙O与射线AC有唯一公共点点D,若⊙O再向右移动,则⊙O与射线AC就没有公共点了,∴x的取值范围是.故选C.8、A【解题分析】

根据众数和中位数的概念求解.【题目详解】这组数据中4出现的次数最多,众数为4,∵共有7个人,∴第4个人的劳动时间为中位数,所以中位数为4,故选A.【题目点拨】本题考查众数与中位数的意义,一组数据中出现次数最多的数据叫做众数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.9、D【解题分析】

先求出AB的长,再求出AC的长,由B、C到A的距离及圆半径的长的关系判断B、C与圆的关系.【题目详解】由题意可求出∠A=30°,AB=2BC=4,由勾股定理得AC==2,AB=4>3,AC=2>3,点B、点C都在⊙A外.故答案选D.【题目点拨】本题考查的知识点是点与圆的位置关系,解题的关键是熟练的掌握点与圆的位置关系.10、B【解题分析】

根据中心对称图形和轴对称图形的概念对各选项分析判断即可得解.【题目详解】解:A、线段,是轴对称图形,也是中心对称图形,故本选项不符合题意;

B、等边三角形,是轴对称图形但不是中心对称图形,故本选项符合题意;

C、正方形,是轴对称图形,也是中心对称图形,故本选项不符合题意;

D、平行四边形,不是轴对称图形,是中心对称图形,故本选项不符合题意.

故选:B.【题目点拨】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.11、D【解题分析】

直接合并同类项,合并同类项时,把同类项的系数相加,所得和作为合并后的系数,字母和字母的指数不变.【题目详解】2a2+3a2=5a2.故选D.【题目点拨】本题考查了利用同类项的定义及合并同类项,熟练掌握合并同类项的方法是解答本题的关键.所含字母相同,并且相同字母的指数也相同的项,叫做同类项;合并同类项时,把同类项的系数相加,所得和作为合并后的系数,字母和字母的指数不变.12、B【解题分析】

根据中心对称图形的概念求解.【题目详解】解:A、不是中心对称图形,故此选项错误;

B、是中心对称图形,故此选项正确;

C、不是中心对称图形,故此选项错误;

D、不是中心对称图形,故此选项错误.

故选:B.【题目点拨】此题主要考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、120°【解题分析】

设扇形的半径为r,圆心角为n°.利用扇形面积公式求出r,再利用弧长公式求出圆心角即可.【题目详解】设扇形的半径为r,圆心角为n°.由题意:,∴r=4,∴∴n=120,故答案为120°【题目点拨】本题考查扇形的面积的计算,弧长公式等知识,解题的关键是掌握基本知识.14、小李.【解题分析】

解:根据图中的信息找出波动性大的即可:根据图中的信息可知,小李的成绩波动性大,则这两人中的新手是小李.故答案为:小李.15、1°【解题分析】

根据全等三角形的对应边相等、对应角相等得到∠BAC=∠DAE,AB=AD,根据等腰三角形的性质和三角形内角和定理计算即可.【题目详解】∵△ABC≌△ADE,∴∠BAC=∠DAE,AB=AD,∴∠BAD=∠EAC=40°,∴∠B=(180°-40°)÷2=1°,故答案为1.【题目点拨】本题考查的是全等三角形的性质和三角形内角和定理,掌握全等三角形的对应边相等、对应角相等是解题的关键.16、﹣1【解题分析】

根据点C的坐标以及菱形的性质求出点B的坐标,然后利用待定系数法求出k的值即可.【题目详解】解:∵A(﹣3,4),∴OC==5,∴CB=OC=5,则点B的横坐标为﹣3﹣5=﹣8,故B的坐标为:(﹣8,4),将点B的坐标代入y=得,4=,解得:k=﹣1.故答案为:﹣1.17、1【解题分析】

由平行四边形ABCD的对角线相交于点O,OE⊥AC,根据线段垂直平分线的性质,可得AE=CE,又由平行四边形ABCD的AB+BC=AD+CD=1,继而可得结论.【题目详解】∵四边形ABCD是平行四边形,∴OA=OC,AB=CD,AD=BC.∵AB=4,BC=6,∴AD+CD=1.∵OE⊥AC,∴AE=CE,∴△CDE的周长为:CD+CE+DE=CD+CE+AE=AD+CD=1.故答案为1.【题目点拨】本题考查了平行四边形的性质,线段的垂直平分线的性质定理等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.18、.【解题分析】

利用规定的运算方法,分别算得a1,a2,a3,a4…找出运算结果的循环规律,利用规律解决问题.【题目详解】∵a1=4a2=,a3=,a4=,…数列以4,−三个数依次不断循环,∵2019÷3=673,∴a2019=a3=,故答案为:.【题目点拨】此题考查规律型:数字的变化类,倒数,解题关键在于掌握运算法则找到规律.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1),;(2);的取值范围是:.【解题分析】

(1)把代入得出的值,进而得出点坐标;(2)当时,将代入,进而得出的值,求出点坐标得出反比例函数的解析式;(3)可得,当向下运动但是不超过轴时,符合要求,进而得出的取值范围.【题目详解】解:(1)∵直线:经过点,∴,∴,∴;(2)当时,将代入,得,,∴代入得,,∴;(3)当时,即,而,如图,,当向下运动但是不超过轴时,符合要求,∴的取值范围是:.【题目点拨】本题考查了反比例函数与一次函数的交点,当有两个函数的时候,着重使用一次函数,体现了方程思想,综合性较强.20、(1)0.3L;(2)在这种滴水状态下一天的滴水量为9.6L.【解题分析】

(1)根据点的实际意义可得;(2)设与之间的函数关系式为,待定系数法求解可得,计算出时的值,再减去容器内原有的水量即可.【题目详解】(1)由图象可知,容器内原有水0.3L.(2)由图象可知W与t之间的函数图象经过点(0,0.3),故设函数关系式为W=kt+0.3.又因为函数图象经过点(1.5,0.9),代入函数关系式,得1.5k+0.3=0.9,解得k=0.4.故W与t之间的函数关系式为W=0.4t+0.3.当t=24时,W=0.4×24+0.3=9.9(L),9.9-0.3=9.6(L),即在这种滴水状态下一天的滴水量为9.6L.【题目点拨】本题考查了一次函数的应用,关键是利用待定系数法正确求出一次函数的解析式.21、(1)见解析;(2);(3)当或8时,与相似.【解题分析】

(1)想办法证明即可解决问题;(2)作A于M,于N.则四边形AMPN是矩形.想办法求出AQ、PN的长即可解决问题;(3)因为,所以,又,推出,推出相似时,与相似,分两种情形讨论即可解决问题;【题目详解】(1)证明:四边形ABCD是等腰梯形,,,,,,,.(2)解:作于M,于N.则四边形是矩形.在中,,,,,,.(3)解:,,,相似时,与相似,,当时,,此时,当时,,此时,综上所述,当PB=5或8时,与△相似.【题目点拨】本题考查几何综合题、圆的有关性质、等腰梯形的性质,锐角三角函数、相似三角形的判定和性质、平行线的性质等知识,解题的关键是正确寻找相似三角形解决问题,学会添加常用辅助线,构造直角三角形和特殊四边形解决问题,属于中考压轴题.22、李强以12米/分钟的速度攀登才能和庞亮同时到达山顶A【解题分析】过点A作AD⊥BC于点D,在Rt△ADC中,由得tanC=∴∠C=30°∴AD=AC=×240=120(米)在Rt△ABD中,∠B=45°∴AB=AD=120(米)120÷(240÷24)=120÷10=12(米/分钟)答:李强以12米/分钟的速度攀登才能和庞亮同时到达山顶A23、【解题分析】

设灯柱BC的长为h米,过点A作AH⊥CD于点H,过点B作BE⊥AH于点E,构造出矩形BCHE,Rt△AEB,然后解直角三角形求解.【题目详解】解:设灯柱的长为米,过点作于点过点做于点∴四边形为矩形,∵∴又∵∴在中,∴∴又∴在中,解得,(米)∴灯柱的高为米.24、见解析【解题分析】

根据菱形的四条边都相等,两条对角线互相垂直平分,可以根据正方形的四边垂直,将小正方形的边作为对角线画菱形;也可以画出以AB为边长的正方形,据此相信你可以画出图形了,注意:本题答案不唯一.【题目详解】如图为画出的菱形:【题目点拨】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法;解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.本题掌握菱形的定义与性质是解题的关键.25、(1)证明见解析(2)4-3【解题分析】试题分析:(1)根据等边三角形的性质,可得EO⊥AC,即BD⊥AC,根据平行四边形的对角线互相垂直可证菱形,(2)根据平行四边形的对角线互相平分可得AO=CO,BO=DO,再根据△EAC是等边三角形可以判定EO⊥AC,并求出EA的长度,然后在Rt△ABO中,利用勾股定理列式求出BO的长度,即DO的长度,在Rt△AOE中,根据勾股定理列式求出EO的长度,再根据ED=EO-DO计算即可

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论