特级教师改编中考数学几何模型24讲:专题16 费马点中三线段模型与最值问题(学生版)_第1页
特级教师改编中考数学几何模型24讲:专题16 费马点中三线段模型与最值问题(学生版)_第2页
特级教师改编中考数学几何模型24讲:专题16 费马点中三线段模型与最值问题(学生版)_第3页
特级教师改编中考数学几何模型24讲:专题16 费马点中三线段模型与最值问题(学生版)_第4页
特级教师改编中考数学几何模型24讲:专题16 费马点中三线段模型与最值问题(学生版)_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题4费马点中三线段模型与最值问题【专题说明】费马点”是指位于三角形内且到三角形三个顶点距高之和最短的点。主要分为两种情况:(1)当三角形三个内角都小于120°的三角形,通常将某三角形绕点旋转60度,从而将“不等三爪图”中三条线段转化在同一条直线上,利用两点之间线段最短解决问题。(2)当三角形有一个内角大于120°时,费马点就是此内角的顶点.费马点问题解题的核心技巧:旋转60°构造等边三角形将“不等三爪图”中三条线段转化至同一直线上利用两点之间线段最短求解问题【模型展示】问题:在△ABC内找一点P,使得PA+PB+PC最小.【分析】在之前的最值问题中,我们解决的依据有:两点之间线段最短、点到直线的连线中垂线段最短、作对称化折线段为直线段、确定动点轨迹求最值等.(1)如图,分别以△ABC中的AB、AC为边,作等边△ABD、等边△ACE.(2)连接CD、BE,即有一组手拉手全等:△ADC≌△ABE.(3)记CD、BE交点为P,点P即为费马点.(到这一步其实就可以了)(4)以BC为边作等边△BCF,连接AF,必过点P,有∠PAB=∠BPC=∠CPA=120°.在图三的模型里有结论:(1)∠BPD=60°;(2)连接AP,AP平分∠DPE.有这两个结论便足以说明∠PAB=∠BPC=∠CPA=120°.原来在“手拉手全等”就已经见过了呀,只是相逢何必曾相识!【例题】1、如图,四边形ABCD是菱形,AB=4,且∠ABC=∠ABE=60°,G为对角线BD(不含B点)上任意一点,将△ABG绕点B逆时针旋转60°得到△EBF,当AG+BG+CG取最小值时EF的长()A. B. C. D.2、如图,将绕点逆时针旋转60°得到,与交于点,可推出结论:问题解决:如图,在中,,,.点是内一点,则点到三个顶点的距离和的最小值是___________

3、如图,四边形是菱形,B=6,且∠ABC=60°,M是菱形内任一点,连接AM,BM,CM,则AM+BM+CM的最小值为________.

4、如图,△ABC中,∠BAC=30°且AB=AC,P是底边上的高AH上一点.若AP+BP+CP的最小值为2,则BC=_____.

5、如图,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM.EADBCEADBCNMFEADBCNM⑴求证:△AMB≌△ENB;⑵①当M点在何处时,AM+CM的值最小;②当M点在何处时,AM+BM+CM的值最小,并说明理由;⑶当AM+BM+CM的最小值为时,求正方形的边长.

6、在正方形ABCD中,点E为对角线AC(不含点A)上任意一点,AB=;(1)如图1,将△ADE绕点D逆

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论