![江西省吉安市吉水中学2024届高一上数学期末调研试题含解析_第1页](http://file4.renrendoc.com/view10/M01/2D/30/wKhkGWV6OUOAT6XKAAHS_qCHUl4059.jpg)
![江西省吉安市吉水中学2024届高一上数学期末调研试题含解析_第2页](http://file4.renrendoc.com/view10/M01/2D/30/wKhkGWV6OUOAT6XKAAHS_qCHUl40592.jpg)
![江西省吉安市吉水中学2024届高一上数学期末调研试题含解析_第3页](http://file4.renrendoc.com/view10/M01/2D/30/wKhkGWV6OUOAT6XKAAHS_qCHUl40593.jpg)
![江西省吉安市吉水中学2024届高一上数学期末调研试题含解析_第4页](http://file4.renrendoc.com/view10/M01/2D/30/wKhkGWV6OUOAT6XKAAHS_qCHUl40594.jpg)
![江西省吉安市吉水中学2024届高一上数学期末调研试题含解析_第5页](http://file4.renrendoc.com/view10/M01/2D/30/wKhkGWV6OUOAT6XKAAHS_qCHUl40595.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江西省吉安市吉水中学2024届高一上数学期末调研试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.为了得到函数的图象,可以将函数的图象()A.沿轴向左平移个单位 B.沿轴向右平移个单位C.沿轴向左平移个单位 D.沿轴向右平移个单位2.下列各题中,p是q的充要条件的是()A.p:,q:B.p:,q:C.p:四边形是正方形,q:四边形的对角线互相垂直且平分D.p:两个三角形相似,q:两个三角形三边成比例3.如图,已知,,共线,且向量,则()A. B.C. D.4.函数是指数函数,则的值是A.4 B.1或3C.3 D.15.已知函数是定义在R上的偶函数,且,当时,,则在区间上零点的个数为()A.2 B.3C.4 D.56.已知,,,则、、的大小关系为()A. B.C. D.7.已知全集U={0,1,2}且={2},则集合A的真子集共有A.3个 B.4个C.5个 D.6个8.将函数的图象向右平移个的单位长度,再将所得到的函数图象上所有点的横坐标伸长为原来的倍(纵坐标不变),则所得到的图象的函数解析式为A. B.C. D.9.某四棱锥的三视图如图所示,则该四棱锥的最长的棱长度为()A. B.C. D.10.已知函数则()A.- B.2C.4 D.1111.设,则“”是“”的()A充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件12.直线的倾斜角为A. B.C. D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.设奇函数对任意的,,有,且,则的解集___________.14.已知不等式的解集是__________.15.幂函数的图象经过点,则_____________.16.已知,则______.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.已知集合,.(1)当时,求,;(2)若,且“”是“”的充分不必要条件,求实数的取值范围.18.指数函数(且)和对数函数(且)互为反函数,已知函数,其反函数为(1)若函数在区间上单调递减,求实数的取值范围;(2)是否存在实数使得对任意,关于的方程在区间上总有三个不等根,,?若存在,求出实数及的取值范围;若不存在,请说明理由19.“活水围网”养鱼技术具有养殖密度高、经济效益好的特点,研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度(单位:千克/年)是养殖密度(单位:尾/立方米)的函数.当不超过4尾/立方米时,的值为2千克/年:当时,是的一次函数,当达到20尾/立方米时,因缺氧等原因,的值为0千克/年.(1)当时,求关于的函数解析式;(2)当养殖密度为多大时,鱼的年生长量(单位:千克/立方米)可以达到最大?并求出最大值.20.已知函数,()(1)当时,求不等式的解集;(2)若对任意,不等式恒成立,求的取值范围;(3)若对任意,存在,使得,求的取值范围21.在中,角A,B,C为三个内角,已知,.(1)求的值;(2)若,D为AB的中点,求CD的长及的面积.22.设圆的圆心在轴上,并且过两点.(1)求圆的方程;(2)设直线与圆交于两点,那么以为直径的圆能否经过原点,若能,请求出直线的方程;若不能,请说明理由.
参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、C【解析】利用函数y=Asin(ωx+φ)的图象变换规律,得出结论【详解】,将函数的图象沿轴向左平移个单位,即可得到函数的图象,故选:C【点睛】本题主要考查函数y=Asin(ωx+φ)的图象变换规律,属于基础题2、D【解析】根据充分条件、必要条件的判定方法,逐项判定,即可求解.【详解】对于A中,当时,满足,所以充分性不成立,反之:当时,可得,所以必要性成立,所以是的必要不充分条件,不符合题意;对于B中,当时,可得,即充分性成立;反之:当时,可得,即必要性不成立,所以是的充分不必要条件,不符合题意;对于C中,若四边形是正方形,可得四边形的对角线互相垂直且平分,即充分性成立;反之:若四边形的对角线互相垂直且平分,但四边形不一定是正方形,即必要性不成立,所以是充分不必要条件,不符合题意;对于D中,若两个三角形相似,可得两个三角形三边成比例,即充分性成立;反之:若两个三角形三边成比例,可得两个三角形相似,即必要性成立,所以是的充分必要条件,符合题意.故选:D.3、D【解析】由已知得,再利用向量的线性可得选项.【详解】因为,,,三点共线,所以,所以.故选:D.4、C【解析】由题意,解得.故选C考点:指数函数的概念5、C【解析】根据函数的周期性、偶函数的性质,结合零点的定义进行求解即可.【详解】因为,所以函数的周期为,当时,,即,因为函数是偶函数且周期为,所以有,所以在区间上零点的个数为,故选:C6、C【解析】利用对数函数、指数函数的单调性结合中间值法可得出、、的大小关系.【详解】因为,,,因此,.故选:C.7、A【解析】,所以集合A的真子集的个数为个,故选A.考点:子集8、A【解析】由题意利用函数的图象变换法则,即可得出结论【详解】将函数的图象向右平移个的单位长度,可得的图象,再将所得到的函数图象上所有点的横坐标伸长为原来的2倍(纵坐标不变),则所得到的图象的函数解析式为,故选【点睛】本题主要考查函数的图象变换法则,注意对的影响9、A【解析】先由三视图得出该几何体的直观图,结合题意求解即可.【详解】由三视图可知其直观图,该几何体为四棱锥P-ABCD,最长的棱为PA,则最长的棱长为,故选A【点睛】本题主要考查几何体的三视图,属于基础题型.10、C【解析】根据分段函数的分段条件,先求得,进而求得的值,得到答案.【详解】由题意,函数,可得,所以.故选:C.【点睛】本题主要考查了分段函数的求值问题,其中解答中根据分段函数的分段条件,代入准确运算是解答的关键,着重考查运算与求解能力.11、A【解析】根据充分条件、必要条件的概念求解即可.【详解】因为,所以由,,所以“”是“”成立的充分不必要条件故选:A12、B【解析】设直线x﹣y+3=0的倾斜角为θ由直线x﹣y+3=0化为y=x+3,∴tanθ=,∵θ∈[0,π),∴θ=60°故选B二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、【解析】可根据函数的单调性和奇偶性,结合和,分析出的正负情况,求解.【详解】对任意,,有故在上为减函数,由奇函数的对称性可知在上为减函数,则则,,,;,;,;,.故解集为:故答案为:【点睛】正确理解奇函数和偶函数的定义,必须把握好两个问题:(1)定义域关于原点对称是函数f(x)为奇函数或偶函数的必要非充分条件;(2)f(-x)=-f(x)或f(-x)=f(x)是定义域上的恒等式.奇函数的图象关于原点对称,偶函数的图象关于y轴对称,反之也成立.利用这一性质可简化一些函数图象的画法,也可以利用它去判断函数的奇偶性14、【解析】结合指数函数的单调性、绝对值不等式的解法求得不等式的解集.详解】,,,或,解得或,所以不等式不等式的解集是.故答案为:15、【解析】先代入点的坐标求出幂函数,再计算即可.【详解】幂函数的图象经过点,设,,解得故,所以.故答案为:.16、【解析】利用商数关系,由得到代入求解.【详解】方法一:,则.方法二:分子分母同除,得.故答案为:【点睛】本题主要考查同角三角函数基本关系式的应用,还考查了运算求解的能力,属于基础题.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1),或;(2)【解析】(1)当时,求出集合,,由此能求出,;(2)推导出,的真子集,求出,,列出不等式组,能求出实数的取值范围【小问1详解】或,当时,,,或;【小问2详解】若,且“”是“”的充分不必要条件,,的真子集,,,,解得实数的取值范围是18、(1);(2)存在,,.【解析】(1)利用复合函数的单调性及函数的定义域可得,即得;(2)由题可得,令,则可得时,方程有两个不等的实数根,当时方程有且仅有一个根在区间内或1,进而可得对于任意的关于t的方程,在区间上总有两个不等根,且有两个不等根,只有一个根,再利用二次函数的性质可得,即得.【小问1详解】∵函数,其反函数为,∴,∴,又函数在区间上单调递减,又∵在定义域上单调递增,∴函数在区间上单调递减,∴,解得;【小问2详解】∵,∴,∵,,令,则时,方程有两个不等的实数根,不妨设为,则,即,∴,即方程有两个不等的实数根,且两根积为1,当时方程有且仅有一个根在区间内或1,由,可得,令,则原题目等价于对于任意的关于t的方程,在区间上总有两个不等根,且有两个不等根,只有一个根,则必有,∴,解得,此时,则其根在区间内,所以,综上,存在,使得对任意,关于的方程在区间上总有三个不等根,,,的取值范围为.【点睛】关键点点睛:本题第二问关键是把问题转化为对于任意的关于t的方程,在区间上总有两个不等根,且有两个不等根,只有一个根,进而利用二次函数性质可求.19、(1);(2)当养殖密度为10尾/立方米时,鱼的年生长量可以达到最大为千克/立方米.【解析】(1)由题意:当时,.当时,设,在,是减函数,由已知得,能求出函数(2)依题意并由(1),,根据分段函数的性质求出各段的最大值,再取两者中较大的即可,由此能求出结果【详解】解:(1)由题意:当时,当时,设,显然在,减函数,由已知得,解得,,故函数(2)依题意并由(1)得,当时,为增函数,且当时,,所以,当时,的最大值为12.5当养殖密度为10尾立方米时,鱼年生长量可以达到最大,最大值约为12.5千克立方米【点睛】(1)很多实际问题中,变量间关系不能用一个关系式给出,这时就需要构建分段函数模型.(2)求函数最值常利用基本不等式法、导数法、函数的单调性等方法.在求分段函数的最值时,应先求每一段上的最值,然后比较得最大值、最小值20、(1)或(2)(3)【解析】(1)将代入不等式,解该一元二次不等式即可;(2)转化为一元二次不等式恒成立问题,利用即可解得参数的范围;(3)对任意,存在,使得,转化为的值域包含于的值域.同时对值域的求解,需要根据二次函数对称轴与闭区间的相对位置进行讨论,最终解不等式组求解.【小问1详解】当时,由得,即,解得或所以不等式的解集为或小问2详解】由得,即不等式的解集是所以,解得所以的取值范围是小问3详解】当时,又①当,即时,对任意,所以,此时不等式组无解,②当,即时,对任意,所以2<m≤3,4-m2③当,即时,对任意,所以此时不等式组无解,④当,即时,对任意,所以此时不等式组无解综上,实数的取值范围是【点睛】关键点点睛,本题中“对任意,存在,使得”这一条件转化为函数值域的包含关系是解决问题的关键,而其中二次函数在闭区间上的值域问题,又需要针对对称轴与区间的相对位置进行讨论.21、(1).(2),的面积.【解析】(1)由可求出,再利用展开即可得出答案;(2)由正弦定理可得,解出,再结合(1)可得,则,从而求出,然后由余弦定理解出,故在中利用余弦定理可得,最后求出的面积即可.【详解】(1),,,;(2)由正弦定理可得,解得,由(1)可得:,,,,,又由余弦定理可得:,解得,在中,,,的面积.【点睛】本题考查了三角函数的和差公式以及正、余弦定理的应用,考查了同角三角函数基本关系式,需要学生具备一定的推理与计算能力,属于中档题.22、(1)(2)或.【解析】(1)圆的圆心在的垂直平分线上,又的中点为,,∴的中垂线为.∵圆的圆心在轴上,∴圆的圆心为,因此,圆的半径,(2)设M,N的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 零售业中的顾客安全保障措施
- DB3715T 69-2025研学旅游指导师服务规范
- 专业技术人才海外培训服务合同(版)
- 上海股权转让合同文本
- 二手房转让合同定金协议书范本
- 中外合资企业劳动合同样本
- 个人保证担保融资合同协议
- NBA赛事中国区电视转播合同
- 互利共赢投资合作合同
- 个人物流配送服务合同模板
- 腹主动脉瘤(护理业务学习)
- 注射用醋酸亮丙瑞林微球
- 部编版语文五年级下册 全册教材分析
- 胎儿性别鉴定报告模板
- 大学生就业指导PPT(第2版)全套完整教学课件
- 家具安装工培训教案优质资料
- 湖南大一型抽水蓄能电站施工及质量创优汇报
- 耳穴疗法治疗失眠
- GB 1886.114-2015食品安全国家标准食品添加剂紫胶(又名虫胶)
- envi二次开发素材包-idl培训
- 2022年上海市初中语文课程终结性评价指南
评论
0/150
提交评论