![江苏省连云港市灌南华侨高级中学2023-2024学年数学高一上期末统考模拟试题含解析_第1页](http://file4.renrendoc.com/view11/M03/33/3B/wKhkGWV6NdiAbg1ZAAHxRG_lxVk541.jpg)
![江苏省连云港市灌南华侨高级中学2023-2024学年数学高一上期末统考模拟试题含解析_第2页](http://file4.renrendoc.com/view11/M03/33/3B/wKhkGWV6NdiAbg1ZAAHxRG_lxVk5412.jpg)
![江苏省连云港市灌南华侨高级中学2023-2024学年数学高一上期末统考模拟试题含解析_第3页](http://file4.renrendoc.com/view11/M03/33/3B/wKhkGWV6NdiAbg1ZAAHxRG_lxVk5413.jpg)
![江苏省连云港市灌南华侨高级中学2023-2024学年数学高一上期末统考模拟试题含解析_第4页](http://file4.renrendoc.com/view11/M03/33/3B/wKhkGWV6NdiAbg1ZAAHxRG_lxVk5414.jpg)
![江苏省连云港市灌南华侨高级中学2023-2024学年数学高一上期末统考模拟试题含解析_第5页](http://file4.renrendoc.com/view11/M03/33/3B/wKhkGWV6NdiAbg1ZAAHxRG_lxVk5415.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省连云港市灌南华侨高级中学2023-2024学年数学高一上期末统考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12小题,共60分)1.下列选项中,与的值不相等的是()A B.cos18°cos42°﹣sin18°sin42°C. D.2.在试验“甲射击三次,观察中靶的情况”中,事件A表示随机事件“至少中靶1次”,事件B表示随机事件“正好中靶2次”,事件C表示随机事件“至多中靶2次”,事件D表示随机事件“全部脱靶”,则()A.A与C是互斥事件 B.B与C是互斥事件C.A与D是对立事件 D.B与D是对立事件3.命题“,使得”的否定是()A., B.,C., D.,4.设常数使方程在区间上恰有三个解且,则实数的值为()A. B.C. D.5.已知是以为圆心的圆上的动点,且,则A. B.C. D.6.已知,若方程有四个不同的实数根,,,,则的取值范围是()A.(3,4) B.(2,4)C.[0,4) D.[3,4)7.下列选项中,两个函数表示同一个函数的是()A., B.,C., D.,8.两圆和的位置关系是A.相离 B.相交C.内切 D.外切9.已知,则()A.- B.C.- D.10.为了得到函数的图像,可以将函数的图像A.向右平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向左平移个单位长度11.在长方体中,,则异面直线与所成角的大小是A. B.C. D.12.幂函数在区间上单调递增,且,则的值()A.恒大于0 B.恒小于0C.等于0 D.无法判断二、填空题(本大题共4小题,共20分)13.已知正实数x,y满足,则的最小值为______14.设三棱锥的三条侧棱两两垂直,且,则三棱锥的体积是______15.设且,函数,若,则的值为________16.已知向量,,则向量在方向上的投影为___________.三、解答题(本大题共6小题,共70分)17.利用拉格朗日(法国数学家,1736-1813)插值公式,可以把二次函数表示成的形式.(1)若,,,,,把的二次项系数表示成关于f的函数,并求的值域(此处视e为给定的常数,答案用e表示);(2)若,,,,求证:.18.计算求解(1)(2)已知,,求的值19.已知直线与的交点为.(1)求交点的坐标;(2)求过交点且平行于直线的直线方程.20.已知集合A={x|x2-7x+6<0},B={x|4-t<x<t},R为实数集(1)当t=4时,求A∪B及A∩∁RB;(2)若A∪B=A,求实数t的取值范围21.已知直线l经过点,其倾斜角为.(1)求直线l的方程;(2)求直线l与两坐标轴围成的三角形的面积.22.已知全集,集合,.(1)当时,求;(2)如果,求实数的取值范围.
参考答案一、选择题(本大题共12小题,共60分)1、C【解析】先计算的值,再逐项计算各项的值,从而可得正确的选项.【详解】.对于A,因为,故A正确.对于B,,故B正确.对于C,,故C错误.对于D,,故D正确.故选:C.2、C【解析】根据互斥事件、对立事件的定义即可求解.【详解】解:因为A与C,B与C可能同时发生,故选项A、B不正确;B与D不可能同时发生,但B与D不是事件的所有结果,故选项D不正确;A与D不可能同时发生,且A与D为事件的所有结果,故选项C正确故选:C.3、B【解析】根据特称命题的否定的知识确定正确选项.【详解】原命题是特称命题,其否定是全称命题,注意否定结论,所以,命题“,使得”的否定是,.故选:B4、B【解析】解:分别作出y=cosx,x∈(,3π)与y=m的图象,如图所示,结合图象可得则﹣1<m<0,故排除C,D,再分别令m=﹣,m=﹣,求出x1,x2,x3,验证x22=x1•x3是否成立;【详解】解:分别作出y=cosx,x∈(,3π)与y=m的图象,如图所示,方程cosx=m在区间(,3π)上恰有三个解x1,x2,x3(x1<x2<x3),则﹣1<m<0,故排除C,D,当m=﹣时,此时cosx=﹣在区间(,3π),解得x1=π,x2=π,x3=π,则x22=π2≠x1•x3=π2,故A错误,当m=﹣时,此时cosx=﹣在区间(,3π),解得x1=π,x2=π,x3=π,则x22=π2=x1•x3=π2,故B正确,故选B【点睛】本题考查了三角函数的图象和性质,考查了数形结合的思想和函数与方程的思想,属于中档题.5、A【解析】根据向量投影的几何意义得到结果即可.【详解】由A,B是以O为圆心的圆上的动点,且,根据向量的点积运算得到=||•||•cos,由向量的投影以及圆中垂径定理得到:||•cos即OB在AB方向上的投影,等于AB的一半,故得到=||•||•cos.故选A【点睛】本题考查向量的数量积公式的应用,以及向量投影的应用.平面向量数量积公式的应用主要有两种形式,一是,二是,主要应用以下几个方面:(1)求向量的夹角,(此时往往用坐标形式求解);(2)求投影,在上的投影是;(3)向量垂直则;(4)求向量的模(平方后需求).6、D【解析】利用数形结合可得,结合条件可得,,,且,再利用二次函数的性质即得.【详解】由方程有四个不同的实数根,得函数的图象与直线有四个不同的交点,分别作出函数的图象与直线由函数的图象可知,当两图象有四个不同的交点时,设与交点的横坐标为,,设,则,,由得,所以,即设与的交点的横坐标为,,设,则,,且,所以,则故选:D.7、C【解析】根据函数的定义域,即可判断选项A的两个函数不是同一个函数,根据函数解析式不同,即可判断选项B,D的两函数都不是同一个函数,从而为同一个函数的只能选C【详解】A.的定义域为{x|x≠0},y=1的定义域为R,定义域不同,不是同一个函数;B.和y=|x|的解析式不同,不是同一函数;C.y=x的定义域为R,y=lnex=x的定义域为R,定义域和解析式都相同,是同一个函数;D.=|x-1|,=x-1,解析式不同,不是同一个函数故选C【点睛】本题考查同一函数的定义,判断两函数是否为同一个函数的方法:看定义域和解析式是否都相同8、B【解析】依题意,圆的圆坐标为,半径为,圆的标准方程为,其圆心坐标为,半径为,两圆心的距离,且两圆相交,故选B.9、D【解析】根据诱导公式可得,结合二倍角的余弦公式即可直接得出结果.【详解】由题意得,,即,所以.故选:D.10、B【解析】因为,所以为了得到函数的图像,可以将函数的图像向右平移个单位长度即可.选B11、C【解析】连接为异面直线与所成角,几何体是长方体,是,,异面直线与所成角的大小是,故选C.12、A【解析】由已知条件求出的值,则可得幂函数的解析式,再利用幂函数的性质判断即可【详解】由函数是幂函数,可得,解得或当时,;当时,因为函数在上是单调递增函数,故又,所以,所以,则故选:A二、填空题(本大题共4小题,共20分)13、【解析】令,转化条件为方程有解,运算可得【详解】令,则,化简得,所以,解得或(舍去),当时,,符合题意,所以得最小值为.故答案为:.14、【解析】根据锥体的体积公式,找到并求出三棱锥的高及底面面积即可求解.【详解】由题意可知该三棱锥为棱长为2的正方体的一个角,如图所示:所以故答案为:【点睛】本题考查锥体体积公式的应用,考查运算求解能力,属于基础题.15、【解析】根据函数的解析式以及已知条件可得出关于实数的等式,由此可解得实数的值.【详解】因为,且,则.故答案为:.16、【解析】直接利用投影的定义求在方向上的投影.【详解】因为,,设与夹角为,,则向量在方向上的投影为:.所以在方向上投影为故答案为:.三、解答题(本大题共6小题,共70分)17、(1);(2)证明见解析【解析】(1)根据已知写出二次项系数后可得;;(2)注意到,因此可以在不等式两边同乘以分母后化简不等式,然后比较可得(可作差或凑配证明)【小问1详解】由题意又,所以即的值域是;【小问2详解】因为,,,,所以,因为,,,,所以,所以,所以,因为,,,,所以,所以,所以,综上,原不等式成立18、(1);(2).【解析】(1)利用对数运算法则直接计算作答.(2)利用对数换底公式及对数运算法则计算作答.【小问1详解】.【小问2详解】因,,所以.19、(1)点的坐标是;(2)直线方程为.【解析】(1)联立两条直线的方程得到交点坐标;(2)根据条件可设所求直线方程为,将P点坐标代入得到参数值解析:(1)由解得所以点的坐标是.(2)因为所求直线与平行,所以设所求直线方程为把点坐标代入得,得故所求的直线方程为.20、(1)见解析;(2)【解析】(1)由二次不等式的解法得,由集合的交、并、补的运算得,进而可得解(2)由集合间的包含关系得:因为,得:,讨论①,②时,运算即可得解.【详解】(1)解二次不等式x2-7x+6<0得:1<x<6,即A=(1,6),当t=4时,B=(0,4),CRB=,所以A∪B=(0,6),A∩CRB=[4,6),故答案为A∪B=(0,6),A∩CRB=[4,6),(2)由A∪B=A,得:B⊆A,①当4-t≥t即t≤2时,B=,满足题意,②B≠时,由B⊆A得:,解得:2<t≤3,综合①②得:实数t的取值范围为:t≤3,故答案为t≤3【点睛】本题考查了二次不等式的解法、集合的交、并、补的运算及集合间的包含关系,属简单题21、(1);(2).【解析】(1)由斜率,再利用点斜式即可求得直线方程;(2)由直线的方程,分别令为,得到纵截距与
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度绿色建材用新型管材研发与推广合同
- 2025年度酒店酒水品牌推广与培训合同范本
- 2025年度特色酒店厨师长职务聘任合同范本
- 2025年旅游行业担保合同汇编
- 2025年宠物健身合同
- 2025年野外露营合同
- 2025年电气自控工程勘察合同
- 2025年追偿合同法律解释
- 公路危险品运输合同范本
- 机场候机厅装修合同及预算
- 畅捷通g6财务管理系统专业版使用手册
- 化工仪表及自动化ppt课件汇总全套ppt完整版课件最全教学教程整套课件全书电子教案全套电子讲义
- 2022注册电气工程师专业考试规范清单汇总
- 一年级写字下学期课件(PPT 38页)
- 桂花-作文ppt-PPT课件(共14张)
- 高一数学概率部分知识点总结及典型例题解析 新课标 人教版 必修
- 铁路运费计算方法
- 《小脑梗死护理查房》
- 免疫及炎症相关信号通路
- 某风电场设备材料设备清单
- —桥梁专业施工图设计审查要(终)
评论
0/150
提交评论