河北省深州市中学2024届数学高一上期末预测试题含解析_第1页
河北省深州市中学2024届数学高一上期末预测试题含解析_第2页
河北省深州市中学2024届数学高一上期末预测试题含解析_第3页
河北省深州市中学2024届数学高一上期末预测试题含解析_第4页
河北省深州市中学2024届数学高一上期末预测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省深州市中学2024届数学高一上期末预测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.()A.1 B.0C.-1 D.2.设函数,若关于的方程有四个不同的解,且,则的取值范围是()A. B.C. D.3.若直线与直线垂直,则()A.1 B.2C. D.4.若函数和.分别由下表给出:011012301则不等式的解集为()A. B.C. D.5.已知,则的大小关系是A. B.C. D.6.已知集合P=,,则PQ=()A. B.C. D.7.已知是第三象限角,,则A. B.C. D.8.已知角的顶点在坐标原点,始边在轴非负半轴上,且角的终边上一点,则()A. B.C. D.9.为了得到函数的图像,可以将函数的图像A.向右平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向左平移个单位长度10.天文学中为了衡量星星的明暗程度,古希腊天文学家喜帕恰斯(,又名依巴谷)在公元前二世纪首先提出了星等这个概念.星等的数值越小,星星就越亮;星等的数值越大,它的光就越暗.到了1850年,由于光度计在天体光度测量中的应用,英国天文学家普森()又提出了衡量天体明暗程度的亮度的概念.天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足.其中星等为的星的亮度为.已知“心宿二”的星等是1.00.“天津四”的星等是1.25.“心宿二”的亮度是“天津四”的倍,则与最接近的是(当较小时,)A.1.24 B.1.25C.1.26 D.1.27二、填空题:本大题共6小题,每小题5分,共30分。11.若直线与垂直,则________12.的定义域为_________;若,则_____13.已知表示不超过实数的最大整数,如,,为取整函数,是函数的零点,则__________14.设平行于轴的直线分别与函数和的图像相交于点,,若在函数的图像上存在点,使得为等边三角形,则点的纵坐标为_________.15.已知幂函数的图象经过点,且满足条件,则实数的取值范围是___16.若x,y∈(0,+∞),且x+4y=1,则的最小值为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.环保生活,低碳出行,电动汽车正成为人们购车的热门选择.某型号电动汽车,在一段平坦的国道进行测试,国道限速(不含).经多次测试得到,该汽车每小时耗电量(单位:)与速度(单位:)的下列数据:01040600132544007200为了描述国道上该汽车每小时耗电量与速度的关系,现有以下三种函数模型供选择:,,.(1)当时,请选出你认为最符合表格所列数据实际的函数模型,并求出相应的函数解析式;(2)现有一辆同型号汽车从地驶到地,前一段是的国道,后一段是的高速路,若已知高速路上该汽车每小时耗电量(单位:)与速度的关系是:,则如何行驶才能使得总耗电量最少,最少为多少?18.已知函数(1)求的定义域;(2)判断的奇偶性,并说明理由;(3)设,证明:19.为落实国家“精准扶贫”政策,某企业于年在其扶贫基地投入万元研发资金,用于养殖业发展,并计划今后年内在此基础上,每年投入的资金比上一年增长(1)写出第年(年为第一年)该企业投入的资金数(万元)与的函数关系式,并指出函数的定义域;(2)该企业从第几年开始(年为第一年),每年投入的资金数将超过万元?(参考数据:,,,,)20.若关于x的不等式的解集为(1)当时,求的值;(2)若,求的值及的最小值21.已知函数的部分图象如图所示,点为函数的图象与y轴的一个交点,点B为函数图象上的一个最高点,且点B的横坐标为,点为函数的图象与x轴的一个交点(1)求函数的解析式;(2)已知函数的值域为,求a,b的值

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】用诱导公式化简计算.【详解】因为,所以,所以原式.故选:A.【点睛】本题考查诱导公式,考查特殊角的三角函数值.属于基础题.2、D【解析】由题意,根据图象得到,,,,,推出.令,,而函数.即可求解.【详解】【点睛】方法点睛:已知函数零点个数(方程根的个数)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.3、B【解析】分析直线方程可知,这两条直线垂直,斜率之积为-1.【详解】由题意可知,即故选:B.4、C【解析】根据题中的条件进行验证即可.【详解】当时,有成立,故是不等式的解;当时,有不成立,故不是不等式的解;当时,有成立,故是不等式的解.综上:可知不等式的解集为.故选:C5、B【解析】根据指数函数的单调性以及对数函数的单调性分别判断出的取值范围,从而可得结果.【详解】,,,,故选B.【点睛】本题主要考查对数函数的性质、指数函数的单调性及比较大小问题,属于难题.解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间);二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用.6、B【解析】根据集合交集定义求解.【详解】故选:B【点睛】本题考查交集概念,考查基本分析求解能力,属基础题.7、D【解析】利用条件以及同角三角函数的基本关系、以及三角函数在各个象限中的符号,求得sinα的值【详解】∵α是第三象限角,tanα,sin2α+cos2α=1,得sinα,故选D【点睛】本题主要考查同角三角函数的基本关系、以及三角函数在各个象限中的符号,属于基础题8、D【解析】根据任意角的三角函数的定义即可求出的值,根据二倍角的正弦公式,即可求出的值【详解】由题意,角的顶点在坐标原点,始边在轴非负半轴上,且角的终边上一点,所以,,所以故选:D9、B【解析】因为,所以为了得到函数的图像,可以将函数的图像向右平移个单位长度即可.选B10、C【解析】根据题意,代值计算,即可得,再结合参考公式,即可估算出结果.【详解】根据题意可得:可得,解得,根据参考公式可得,故与最接近的是.故选:C.【点睛】本题考查对数运算,以及数据的估算,属基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据两直线垂直的等价条件列方程,解方程即可求解.【详解】因为直线与垂直,所以,解得:,故答案为:.12、①.;②.3.【解析】空一:根据正切型函数的定义域进行求解即可;空二:根据两角和的正切公式进行求解即可.【详解】空一:由函数解析式可知:,所以该函数的定义域为:;空二:因为,所以.故答案为:;13、2【解析】由于,所以,故.【点睛】本题主要考查对新定义概念的理解,考查利用二分法判断函数零点的大概位置.首先研究函数,令无法求解出对应的零点,考虑用二分法来判断,即计算,则零点在区间上.再结合取整函数的定义,可求出的值.14、【解析】设直线的方程为,求得点,坐标,得到,取的中点,连接,根据三角形为等边三角形,表示出点坐标,根据点在函数的图象上,得到关于的方程,求出,进而可得点的纵坐标.【详解】设直线的方程为,由,得,所以点,由,得,所以点,从而,如图,取的中点,连接,因为为等边三角形,则,所以,,则点,因为点在函数的图象上,则,解得,所以点的纵坐标为.故答案为:.【点睛】关键点点睛:求解本题的关键在于先由同一参数表示出点坐标,再代入求解;本题中,先设直线,分别求出,坐标,得到等边三角形的边长,由此用表示出点坐标,即可求解.15、【解析】首先求得函数的解析式,然后求解实数的取值范围即可.【详解】设幂函数的解析式为,由题意可得:,即幂函数的解析式为:,则即:,据此有:,求解不等式组可得实数的取值范围是.【点睛】本题主要考查幂函数的定义及其应用,属于基础题.16、9【解析】由x+4y=1,结合目标式,将x+4y替换目标式中的“1”即可得到基本不等式的形式,进而求得它的最小值,注意等号成立的条件【详解】∵x,y∈(0,+∞)且x+4y=1∴当且仅当有时取等号∴的最小值为9故答案为:9【点睛】本题考查了基本不等式中“1”的代换,注意基本不等式使用条件“一正二定三相等”,属于简单题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)选择,;(2)当这辆车在国道上的行驶速度为,在高速路上的行驶速度为时,该车从地到地的总耗电量最少,最少为.【解析】(1)根据当时,无意义,以及是个减函数,可判断选择,然后利用待定系数法列方程求解即可;(2)利用二次函数的性质可判断在国道上的行驶速度为耗电最少,利用对勾函数的性质可判断在高速路上的行驶速度为时耗电最少,从而可得答案.【详解】(1)对于,当时,它无意义,所以不合题意;对于,它显然是个减函数,这与矛盾;故选择.根据提供的数据,有,解得,当时,.(2)国道路段长为,所用时间为,所耗电量,因为,当时,;高速路段长为,所用时间为,所耗电量为,由对勾函数的性质可知,在上单调递增,所以;故当这辆车在国道上的行驶速度为,在高速路上的行驶速度为时,该车从地到地的总耗电量最少,最少为.【点睛】方法点睛:与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过现实生活的事例考查书本知识,解决这类问题的关键是耐心读题、仔细理解题,只有吃透题意,才能将实际问题转化为数学模型进行解答.18、(1)(2)偶函数;理由见解析(3)证明见解析【解析】(1)根据对数函数的真数大于0建立不等式求解;(2)根据函数的奇偶性定义判断即可;(3)利用不等式的性质及对数函数的单调性证明即可.【小问1详解】因为,即,所以函数的定义域是【小问2详解】因为,都有,且,所以函数为偶函数【小问3详解】因为,所以所以所以因为是增函数,所以因为,,所以19、(1),其定义域为(2)第年【解析】(1)由题设,应用指数函数模型,写出前2年的研发资金,然后进一部确定函数解析式及定义域;(2)由(1)得,然后利用对数运算求解集.【小问1详解】第一年投入的资金数为万元,第二年投入的资金数为万元,第x年(年为第一年)该企业投入的资金数(万元)与的函数关系式为,其定义域为【小问2详解】由(1)得,,即,因为,所以即该企业从第年,就是从年开始,每年投入的资金数将超过万元20、(1);(2);.【解析】(1)根据一元二次不等式解集的性质,结合一元二次方程根与系数的关系、根的判别式进行求解即可;(2)根据一元二次不等式解集的性质,结合一元二次方程根与系数的关系、基本不等式进行求解即可.【小问1详解】由题可知关于x的方程有两个根,所以故【小问2详解】由题意关于x的方程有两个正根,所以有解得;同时,由得,所以,由于,所以,当且仅当,即,且,解得时取得“=”,此时实数符合条件,故,且当时,取

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论