版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
甘肃省兰州市市区片2023-2024学年高一上数学期末复习检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.已知函数,若关于的方程有8个不等的实数根,则的取值范围是A. B.C. D.2.已知是上的偶函数,在上单调递增,且,则下列不等式成立的是()A. B.C. D.3.下列关系式中,正确的是A. B.C. D.4.定义:对于一个定义域为的函数,若存在两条距离为的直线和,使得时,恒有,则称在内有一个宽度为的通道.下列函数:①;②;③;④.其中有一个宽度为2的通道的函数的序号为A.①② B.②③C.②④ D.②③④5.下列函数中,周期为的是()A. B.C. D.6.方程的解所在区间是()A. B.C. D.7.已知函数,.若在区间内没有零点,则的取值范围是A. B.C. D.8.三个数大小的顺序是A. B.C. D.9.如图,在菱形ABCD中,下列式子成立的是A. B.C. D.10.函数的大致图像是()A. B.C. D.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.若函数(,且),在上的最大值比最小值大,则______________.12.集合的子集个数为______13.计算:_______14.若函数(,且)的图象经过点,则___________.15.已知,则函数的最大值是__________三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.已知函数.(1)求的值;你能发现与有什么关系?写出你的发现并加以证明:(2)试判断在区间上的单调性,并用单调性的定义证明.17.已知正三棱柱,是的中点求证:(1)平面;(2)平面平面18.定义在D上的函数,如果满足:存在常数,对任意,都有成立,则称是D上的有界函数,其中M称为函数的上界.(1)证明:在上有界函数;(2)若函数在上是以3为上界的有界函数,求实数a的取值范围.19.在平面直角坐标系中,角()和角()的顶点均与坐标原点重合,始边均为轴的非负半轴,终边分别与单位圆交于两点,两点的纵坐标分别为,.(1)求,的值;(2)求的值.20.已知集合,(1)当时,求;(2)若,求a的取值范围;21.为持续推进“改善农村人居环境,建设宜居美丽乡村”,某村委计划在该村广场旁一矩形空地进行绿化.如图所示,两块完全相同的长方形种植绿草坪,草坪周围(斜线部分)均摆满宽度相同的花,已知两块绿草坪的面积均为400平方米.(1)若矩形草坪的长比宽至少多9米,求草坪宽的最大值;(2)若草坪四周及中间的花坛宽度均为2米,求整个绿化面积的最小值.
参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、D【解析】画出函数的图象,利用函数的图象,判断的范围,然后利用二次函数的性质求解的范围【详解】解:函数,的图象如图:关于的方程有8个不等的实数根,必须有两个不相等的实数根且两根位于之间,由函数图象可知,.令,方程化为:,,,开口向下,对称轴为:,可知:的最大值为:,的最小值为:2故选:【点睛】本题考查函数与方程的应用,函数的零点个数的判断与应用,考查数形结合以及计算能力,属于中档题2、B【解析】根据函数的奇偶性和函数的单调性判断函数值的大小即可.【详解】因为是上的偶函数,在上单调递增,所以在上单调递减,.又因为,因为,在上单调递减,所以,即.故选:B.3、C【解析】不含任何元素的集合称为空集,即为,而代表由单元素0组成的集合,所以,而与的关系应该是.故选C.4、D【解析】②③可由作图所得,④作图可知有一个宽度为1的通道,由定义可知比1大的通道都存在.5、C【解析】对于A、B:直接求出周期;对于C:先用二倍角公式化简,再求其周期;对于D:不是周期函数,即可判断.【详解】对于A:的周期为,故A错误;对于B:的周期为,故B错误;对于C:,所以其周期为,故C正确;对于D:不是周期函数,没有最小正周期,故D错误.故选:C6、C【解析】判断所给选项中的区间的两个端点的函数值的积的正负性即可选出正确答案.【详解】∵,∴,,,,∴,∵函数的图象是连续的,∴函数的零点所在的区间是.故选C【点睛】本题考查了根据零存在原理判断方程的解所在的区间,考查了数学运算能力.7、D【解析】先把化成,求出的零点的一般形式为,根据在区间内没有零点可得关于的不等式组,结合为整数可得其相应的取值,从而得到所求的取值范围.【详解】由题设有,令,则有即因为在区间内没有零点,故存在整数,使得,即,因为,所以且,故或,所以或,故选:D.【点睛】本题考查三角函数在给定范围上的零点的存在性问题,此类问题可转化为不等式组的整数解问题,本题属于难题.8、B【解析】根据指数函数和对数函数的单调性知:,即;,即;,即;所以,故正确答案为选项B考点:指数函数和对数函数的单调性;间接比较法9、D【解析】解:利用菱形的性质可知,第一问中方向不同,错误;选项B中显然不共线,因此错误.,因此C不对;只有D正确10、D【解析】由题可得定义域为,排除A,C;又由在上单增,所以选D.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、或.【解析】分和两种情况,根据指数函数的单调性确定最大值和最小值,根据已知得到关于实数的方程求解即得.【详解】若,则函数在区间上单调递减,所以,,由题意得,又,故;若,则函数在区间上单调递增,所以,,由题意得,又,故.所以的值为或.【点睛】本题考查函数的最值问题,涉及指数函数的性质,和分类讨论思想,属基础题,关键在于根据指数函数的底数的不同情况确定函数的单调性.12、32【解析】由n个元素组成的集合,集合的子集个数为个.【详解】解:由题意得,则A的子集个数为故答案为:32.13、【解析】求出的值,求解计算即可.【详解】故答案为:14、【解析】把点的坐标代入函数的解析式,即可求出的值.【详解】因为函数的图象经过点,所以,解得.故答案为:.15、【解析】由函数变形为,再由基本不等式求得,从而有,即可得到答案.【详解】∵函数∴由基本不等式得,当且仅当,即时取等号.∴函数的最大值是故答案为.【点睛】本题主要考查线性规划的应用以及基本不等式的应用,.利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用或时等号能否同时成立).三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1),,与的关系:,证明见解析(2)在上单调递减,证明见解析【解析】(1)通过函数解析式计算出,通过计算证明.(2)通过来证得在区间上单调递减.【小问1详解】,.证明:..【小问2详解】在区间上递减.证明如下:且.在上单调递减.17、(1)见解析(2)见解析【解析】(1)连接,交于点,连结,由棱柱的性质可得点是的中点,根据三角形中位线定理可得,利用线面平行的判定定理可得平面;(2)由正棱柱的性质可得平面,于是,再由正三角形的性质可得,根据线面垂直的判定定理可得平面,从而根据面面垂直的判定定理可得结论.试题解析:(1)连接,交于点,连结,因为正三棱柱,所以侧面是平行四边形,故点是的中点,又因为是的中点,所以,又因为平面,平面,所以平面(2)因为正三棱柱,所以平面,又因为平面,所以,因为正三棱柱,是的中点,是的中点,所以,又因为,所以平面,又因为平面,所以平面平面【方法点晴】本题主要考查线面平行的判定定理、线面垂直及面面垂直的证明,属于中档题.证明线面平行的常用方法:①利用线面平行的判定定理,使用这个定理的关键是设法在平面内找到一条与已知直线平行的直线,可利用几何体的特征,合理利用中位线定理、线面平行的性质或者构造平行四边形、寻找比例式证明两直线平行.②利用面面平行的性质,即两平面平行,在其中一平面内的直线平行于另一平面.本题(1)是就是利用方法①证明的.18、(1)证明见解析(2)【解析】(1)根据,利用求解单调性求解;(2)根据在上是以3为上界的有界函数,令,则,转化,在时恒成立求解.【小问1详解】解:,则在上是严格增函数,故,即,故,故是有界函数;【小问2详解】因为在上是以3为上界的有界函数,所以在上恒成立,令,则,所以在时恒成立,所以,在时恒成立,函数在上严格递减,所以;函数在上严格递增,所以.所以实数a的取值范围是.19、(1),(2)【解析】(1)先利用任意角的三角函数的定义求出,再利用同角三角函数的关系可求得答案,(2)先利用诱导公式化简,再代值计算即可【小问1详解】因为在平面直角坐标系中,角,的顶点均与坐标原点重合,终边分别与单位圆交于两点,且两点的纵坐标分别为,,又因为,,根据三角函数的定义得:,,所以,,所以,.【小问2详解】20、(1),(2)【解析】(1)计算得到,,计算得到答案.(2)所以,讨论和两种情况计算得到答案.【详解】(1)因为,所以,因为,所以(2)因为,所以,当时,,即;当时,,即.综上所述:a的取值范围为.【点睛】本题考查了集合的运算,根据集合的包含关系求参数,忽略掉空集是容易发生的错误.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 一年级上册数学教案-0的认识-人教新课标
- 一年级下册数学教案-6.5 解决问题|人教新课标
- 一般金融机构行业运行状况及3C级别表现 202411 -联合资信
- 一年级上册数学教案 第五单元 第2节【第三课时】 8、9的加减法 人教新课标
- 1.1 地球的宇宙环境 课件高一上学期 地理 人教版(2019)必修一
- 单位培训学习考核方式
- 胃肠绞痛护理比赛
- 炭素企业安全培训
- 2023-2024学年山东省潍坊市高三(上)期末地理试卷
- 2023年山东省潍坊市高考地理三模试卷
- 2021小学语文《习作例文-风向袋的制作》说课稿及教学反思
- 外科学教学课件:周围神经损伤
- 杆塔分解组立
- JJG 861-2007 酶标分析仪检定规程-(高清现行)
- 13培智二年级语文上册《土木火》教案
- 主变运输及就位专项施工措施
- 中医气功学导论期末试卷附答案
- 人类命运共同体视域下小学国际理解教育的实践探索
- 保安队排班表
- 50Hz微电子相敏轨道电路课件
- 中考数学阅读理解型问题复习
评论
0/150
提交评论