福建省宁德市重点名校2024届高一数学第一学期期末联考试题含解析_第1页
福建省宁德市重点名校2024届高一数学第一学期期末联考试题含解析_第2页
福建省宁德市重点名校2024届高一数学第一学期期末联考试题含解析_第3页
福建省宁德市重点名校2024届高一数学第一学期期末联考试题含解析_第4页
福建省宁德市重点名校2024届高一数学第一学期期末联考试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

福建省宁德市重点名校2024届高一数学第一学期期末联考试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.已知点,,,且满足,若点在轴上,则等于A. B.C. D.2.为了得到函数的图象,只需要把函数的图象上所有的点①向左平移个单位,再把所有各点的横坐标缩短到原来的倍;②向左平移个单位,再把所有各点的横坐标缩短到原来的倍;③各点的横坐标缩短到原来的倍,再向左平移个单位:④各点的横坐标缩短到原来的倍,再向左平移个单位其中命题正确的为()A.①③ B.①④C.②③ D.②④3.函数的单调递增区间是()A. B.C. D.4.对于两条不同的直线l1,l2,两个不同的平面α,β,下列结论正确的A.若l1∥α,l2∥α,则l1∥l2 B.若l1∥α,l1∥β,则α∥βC若l1∥l2,l1∥α,则l2∥α D.若l1∥l2,l1⊥α,则l2⊥α5.cos600°值等于A. B.C. D.6.已知函数,下列结论中错误的是()A.的图像关于中心对称B.在上单调递减C.的图像关于对称D.的最大值为37.已知在上的减函数,则实数的取值范围是()A. B.C. D.8.若向量,则下列结论正确的是A. B..C. D.9.已知,且在区间有最大值,无最小值,则=()A B.C. D.10.函数f(x)=log3x-8+2x的零点一定位于区间A. B.C. D.11.函数的图象大致是A. B.C. D.12.中国古代十进制的算筹记数法在世界数学史上是一个伟大的创造.据史料推测,算筹最晚出现在春秋晚期或战国初年.算筹记数的方法是:个位、百位、万位、…上的数按纵式的数码摆出;十位、千位、十万位、…上的数按横式的数码摆出,如可用算筹表示为.这个数字的纵式与横式的表示数码如图所示,则的运算结果用算筹表示为()A. B.C. D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.计算:_______14.已知函数(,)的部分图象如图所示,则的值为15.如图,已知矩形ABCD,AB=1,BC=a,PA⊥平面ABCD,若在BC上只有一个点Q满足PQ⊥QD,则a的值等于________16.已知甲、乙、丙三人去参加某公司面试,他们被该公司录取的概率分别是,且三人录取结果相互之间没有影响,则他们三人中恰有两人被录取的概率为___________.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.某种蔬菜从1月1日起开始上市,通过市场调查,得到该蔬菜种植成本(单位:元/)与上市时间(单位:10天)数据如下表:时间51125种植成本1510.815(1)根据上表数据,从下列函数:,,,中(其中),选取一个合适的函数模型描述该蔬菜种植成本与上市时间的变化关系;(2)利用你选取的函数模型,求该蔬菜种植成本最低时的上市时间及最低种植成本.18.已知定义在上的函数,其中,且(1)试判断函数的奇偶性,并证明你的结论;(2)解关于的不等式19.一种专门占据内存的计算机病毒,能在短时间内感染大量文件,使每个文件都不同程度地加长,造成磁盘空间的严重浪费.这种病毒开机时占据内存2KB,每3分钟后病毒所占内存是原来的2倍.记x分钟后的病毒所占内存为yKB.(1)求y关于x的函数解析式;(2)如果病毒占据内存不超过1GB(1GB=21020.如图,在四棱锥中,,,,分别为棱,的中点,,,且.(1)证明:平面平面.(2)若四棱锥的高为3,求该四棱锥的体积.21.化简求值:(1).(2)已知都为锐角,,求值.22.已知,,,.(1)求的值;(2)求的值:(3)求的值.

参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、C【解析】由题意得,∴设点的坐标为,∵,∴,∴,解得故选:C2、B【解析】利用三角函数图象变换可得出结论.【详解】因为,所以,为了得到函数的图象,只需要把函数的图象上所有的点向左平移个单位,再把所有各点的横坐标缩短到原来的倍,或将函数的图象上各点的横坐标缩短到原来的倍,再向左平移个单位.故①④满足条件,故选:B.3、C【解析】根据诱导公式变性后,利用正弦函数的递减区间可得结果.【详解】因为,由,得,所以函数的单调递增区间是.故选:C4、D【解析】详解】A.若l1∥α,l2∥α,则两条直线可以相交可以平行,故A选项不正确;B.若l1∥α,l1∥β,则α∥β,当两条直线平行时,两个平面可以是相交的,故B不正确;C.若l1∥l2,l1∥α,则l2∥α,有可能在平面内,故C不正确;D.若l1∥l2,l1⊥α,则l2⊥α,根据课本的判定定理得到是正确的.故答案为D.5、B【解析】利用诱导公式化简即可得到结果.【详解】cos600°故选B【点睛】本题考查利用诱导公式化简求值,考查特殊角的三角函数值,属于基础题.6、B【解析】根据三角函数的性质,依次整体代入检验即可得答案.【详解】解:对于A选项,当时,,所以是的对称中心,故A选项正确;对于B选项,当时,,此时函数在区间上不单调,故B选项错误;对于C选项,当时,,所以的图像关于对称,故C选项正确;对于D选项,的最大值为,故D选项正确.故选:B7、B【解析】令,,()若,则函数,减函数,由题设知为增函数,需,故此时无解()若,则函数是增函数,则为减函数,需且,可解得综上可得实数的取值范围是故选点睛:已知函数的单调性确定参数的值或范围要注意以下两点:(1)若函数在区间上单调,则该函数在此区间的任意子区间上也是单调的;(2)分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值;(3)复合函数的单调性,不仅要注意内外函数单调性对应关系,而且要注意内外函数对应自变量取值范围.8、C【解析】本题考查向量的坐标运算解答:选项A、选项B、选项C、,正确选项D、因为所以两向量不平行9、C【解析】结合题中所给函数的解析式可得:直线为的一条对称轴,∴,∴,又,∴当k=1时,.本题选择C选项.10、B【解析】根据零点存在性定理,因为,所以函数零点在区间(3,4)内,故选择B考点:零点存在性定理11、A【解析】利用函数的奇偶性排除选项B、C项,然后利用特殊值判断,即可得到答案【详解】由题意,函数满足,所以函数为偶函数,排除B、C,又因为时,,此时,所以排除D,故选A【点睛】本题主要考查了函数的图象的识别问题,其中解答中熟练应用函数的奇偶性进行排除,以及利用特殊值进行合理判断是解答的关键,着重考查了分析问题解决问题的能力,属于基础题.12、A【解析】先利用指数和对数运算化简,再利用算筹表示法判断.【详解】因为,用算筹记数表示为,故选:.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、【解析】求出的值,求解计算即可.【详解】故答案为:14、【解析】先计算周期,则,函数,又图象过点,则,∴由于,则.考点:依据图象求函数的解析式;15、2【解析】证明平面得到,故与以为直径的圆相切,计算半径得到答案.详解】PA⊥平面ABCD,平面ABCD,故,PQ⊥QD,,故平面,平面,故,在BC上只有一个点Q满足PQ⊥QD,即与以为直径的圆相切,,故间的距离为半径,即为1,故.故答案为:216、##0.15【解析】利用相互独立事件概率乘法公式分别求出甲和乙被录取的概率、甲和丙被录取的概率、乙和丙被录取的概率,然后即可求出他们三人中恰有两人被录取的概率.【详解】因为甲、乙、丙三人被该公司录取的概率分别是,且三人录取结果相互之间没有影响,甲和乙被录取的概率为,甲和丙被录取的概率为,乙和丙被录取的概率为则他们三人中恰有两人被录取的概率为,故答案为:.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1);(2)该蔬菜上市150天时,该蔬菜种植成本最低为10(元/).【解析】(1)先作出散点图,根据散点图的分布即可判断只有模型符合,然后将数据代入建立方程组,求出参数.(2)由于模型为二次函数,结合定义域,利用配方法即可求出最低种植成本以及对应得上市时间.【详解】解:(1)以上市时间(单位:10天)为横坐标,以种植成本(单位/)为纵坐标,画出散点图(如图).根据点的分布特征,,,这三个函数模型与表格所提供的数据不吻合,只有函数模型与表格所提供的数据吻合最好,所以选取函数模型进行描述该蔬菜种植成本与上市时间的变化关系.将表格所提供的三组数据分别代入,得解得所以,描述该蔬菜种植成本与上市时间的变化关系的函数为.(2)由(1)知,所以当时,的最小值为10,即该蔬菜上市150天时,该蔬菜种植成本最低为10(元/).【点睛】判断模型的步骤:(1)作出散点图;(2)根据散点图点的分布,以及各个模型的图像特征作出判断;二次函数型最值问题常用方法:配方法,但要注意定义域.18、(1)为上的奇函数;证明见解析(2)答案不唯一,具体见解析【解析】(1)利用函数奇偶性的定义判断即可,(2)由题意可得,得,然后分和解不等式即可【小问1详解】函数为奇函数证明:函数的定义域为,,即对任意恒成立.所以为上的奇函数【小问2详解】由,得,即因为,,且,所以且由,即当,即时,解得当,即时,解得综上,当时,不等式的解集为;当时,不等式的解集为19、(1)y=2x3(2)57分钟【解析】(1)根据题意可得,y关于x的函数解析式;(2)先根据题意,换算病毒占据的最大内存1GB【小问1详解】因为这种病毒开机时占据内存2KB,每3分钟后病毒所占内存是原来的2倍.所以x分钟后的病毒所占内存为,得y=2x3【小问2详解】因为病毒占据内存不超过1GB时,计算机能够正常使用,故有2x3+1所以本次开机计算机能正常使用的时长为57分钟.20、(1)见解析(2)9【解析】(1)根据,可知,由可证明,又根据中位线可证明即可由平面与平面平行的判定定理证明平面平面.(2)利用勾股定理,求得.底面为直角梯形,求得底面积后即可由四棱锥的体积公式求得解.【详解】(1)证明:因为为的中点,且,所以.因为,所以,所以四边形为平行四边形,所以.在中,因为,分别为,的中点,所以,因为,,所以平面平面.(2)因为,所以,又,所以.所以四边形的面积为,故四棱锥的体积为.【点睛】本题考查了平面与平面平行的判定,四棱锥体积的求法,属于基础题.21、(1);(2).【解析】(1)利用诱导公式以及两角和的正切公式结合正、余弦的齐次式计算化简原式;(2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论