甘肃省定西市通渭县第二中学2024届数学高一上期末质量跟踪监视模拟试题含解析_第1页
甘肃省定西市通渭县第二中学2024届数学高一上期末质量跟踪监视模拟试题含解析_第2页
甘肃省定西市通渭县第二中学2024届数学高一上期末质量跟踪监视模拟试题含解析_第3页
甘肃省定西市通渭县第二中学2024届数学高一上期末质量跟踪监视模拟试题含解析_第4页
甘肃省定西市通渭县第二中学2024届数学高一上期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

甘肃省定西市通渭县第二中学2024届数学高一上期末质量跟踪监视模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若,则的大小关系是()A. B.C. D.2.已知正方体ABCD-ABCD中,E、F分别为BB、CC的中点,那么异面直线AE与DF所成角的余弦值为A. B.C. D.3.如果函数是定义在上的奇函数,当时,函数的图象如图所示,那么不等式的解集是A. B.C. D.4.下列函数,在其定义域内既是奇函数又是增函数的是A. B.C. D.5.已知扇形OAB的周长为12,圆心角大小为,则该扇形的面积是()cm.A.2 B.3C.6 D.96.集合{|是小于4的正整数},,则如图阴影部分表示的集合为()A. B.C. D.7.已知定义域为的函数满足:,且,当时,,则等于A. B.C.2 D.48.函数的定义域为A. B.C. D.9.函数的单调递增区间为()A. B.C. D.10.以下命题(其中,表示直线,表示平面):①若,,则;②若,,则;③若,,则;④若,,则其中正确命题的个数是A.0个 B.1个C.2个 D.3个二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数在区间上恰有个最大值,则的取值范围是_____12.的定义域为________________13.写出一个同时具有下列三个性质函数:________.①;②在上单调递增;③.14.已知幂函数过定点,且满足,则的范围为________15.函数在一个周期内图象如图所示,此函数的解析式为___________.16.已知,则的值为__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.榴弹炮是一种身管较短,弹道比较弯曲,适合于打击隐蔽目标和地面目标的野战炮,是地面炮兵的主要炮种之一.为中国共产党建党100周年献礼,某军工研究所对某类型榴弹炮进行了改良.如图所示,建立平面直角坐标系,x轴在地平面上,y轴垂直于地平面,单位长度为.改良后的榴弹炮位于坐标原点.已知该炮弹发射后的轨迹在方程表示的曲线上,其中k与发射方向有关.炮的射程是指炮弹落地点的横坐标(1)求该类型榴弹炮的最大射程;(2)证明:该类型榴弹炮发射的高度不会超过18.定义在上奇函数,已知当时,求实数a的值;求在上的解析式;若存在时,使不等式成立,求实数m的取值范围19.设函数的定义域为A,集合.(1);(2)若集合是的子集,求实数a的取值范围.20.某商人计划经销A,B两种商品,据调查统计,当投资额为万元时,在经销A,B商品中所获得的收益分别是,,已知投资额为0时,收益为0.(1)求a,b值;(2)若该商人投入万元经营这两种商品,试建立该商人所获收益的函数模型;(3)如果该商人准备投入5万元经营这两种商品,请你帮他制定一个资金投入方案,使他能获得最大收益,并求出其收益的最大值.21.已知函数是上的偶函数,当时,.(1)用单调性定义证明函数在上单调递增;(2)求当时,函数的解析式.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】利用指数函数与对数函数的单调性,把各数与中间值0,1比较即得【详解】利用指数函数的单调性知:,即;利用指数函数的单调性知:,即;利用对数函数的单调性知:,即;所以故选:C2、C【解析】连接DF,因为DF与AE平行,所以∠DFD即为异面直线AE与DF所成角的平面角,设正方体的棱长为2,则FD=FD=,由余弦定理得cos∠DFD==.3、B【解析】图1图2如图1为f(x)在(-3,3)的图象,图2为y=cosx图象,要求得的解集,只需转化为在寻找满足如下两个关系的区间即可:,结合图象易知当时,,当时,,当时,,故选B.考点:奇函数的性质,余弦函数的图象,数形结合思想.4、A【解析】由幂函数,指数函数与对数函数的性质可得【详解】解:根据题意,依次分析选项:对于A,,其定义域为R,在R上既是奇函数又是增函数,符合题意;对于B,,是对数函数,不是奇函数,不符合题意;对于C,,为指数函数,不为奇函数;对于D,,为反比例函数,其定义域为,在其定义域上不是增函数,不符合题意;故选A【点睛】本题考查函数的奇偶性与单调性,是基础题,掌握幂函数,指数函数与对数函数的性质是解题关键5、D【解析】设扇形的半径和弧长,根据周长和圆心角解方程得到,再利用扇形面积公式计算即得结果.【详解】设扇形OAB的半径r,弧长l,则周长,圆心角为,解得,故扇形面积为.故选:D6、B【解析】先化简集合A,再判断阴影部分表示的集合为,求交集即得结果.【详解】依题意,,阴影部分表示的集合为.故选:B.7、D【解析】由得,又由得函数为偶函数,所以选D8、C【解析】要使函数有意义,需满足解得,所以函数的定义域为考点:求函数的定义域【易错点睛】本题是求函数的定义域,注意分母不能为0,同时本题又将对数的运算,交集等知识联系在一起,重点考查学生思维能力的全面性和缜密性,凸显了知识之间的联系性、综合性,能较好的考查学生的计算能力和思维的全面性.学生很容易忽略,造成失误,注意在对数函数中,真数一定是正数,负数和零无意义考点:求函数的定义域9、C【解析】由解出范围即可.【详解】由,可得,所以函数的单调递增区间为,故选C.10、A【解析】利用线面平行和线线平行的性质和判定定理对四个命题分别分析进行选择【详解】①若a∥b,b⊂α,则a∥α或a⊂α,故错;②若a∥α,b∥α,则a,b平行、相交或异面,故②错;③若a∥b,b∥α,则a∥α或a⊂α,故③错;④若a∥α,b⊂α,则a、b平行或异面,故④错正确命题个数为0个,故选A.【点睛】本题考查空间两直线的位置关系,直线与平面的位置关系,主要考查线面平行的判定和性质.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】将代入函数解析式,求出的取值范围,根据正弦取8次最大值,求出的取值范围【详解】因为,,所以,又函数在区间上恰有个最大值,所以,得【点睛】三角函数最值问题要注意整体代换思想的体现,由的取值范围推断的取值范围12、【解析】由分子根式内部的代数式大于等于0,分母不等于0列式求解x的取值集合即可得到答案.或x>5.∴的定义域为考点:函数的定义域及其求法.13、或其他【解析】找出一个同时具有三个性质的函数即可.【详解】例如,是单调递增函数,,满足三个条件.故答案为:.(答案不唯一)14、【解析】根据幂函数所过的点求出解析式,利用奇偶性和单调性去掉转化为关于的不等式即可求解.【详解】设幂函数,其图象过点,所以,即,解得:,所以,因为,所以为奇函数,且在和上单调递减,所以可化为,可得,解得:,所以的范围为,故答案为:.15、【解析】根据所给的图象,可得到,周期的值,进而得到,根据函数的图象过点可求出的值,得到三角函数的解析式【详解】由图象可知,,,由,三角函数的解析式是函数的图象过,,把点的坐标代入三角函数的解析式,,,又,,三角函数的解析式是.故答案为:.16、【解析】答案:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)证明见解析【解析】(1)解一元二次方程即可求得该类型榴弹炮的最大射程;(2)以二次函数在给定区间求值域的方法去解决即可.【小问1详解】令,得,由实际意义和题设条件知,故,(当且仅当时取等号)所以炮的最大射程为;【小问2详解】,由,可知因此,所以该类型榴弹炮发射的高度不会超过18、(1);(2);(3).【解析】根据题意,由函数奇偶性的性质可得,解可得的值,验证即可得答案;当时,,求出的解析式,结合函数的奇偶性分析可得答案;根据题意,若存在,使得成立,即在有解,变形可得在有解设,分析的单调性可得的最大值,从而可得结果【详解】根据题意,是定义在上的奇函数,则,得经检验满足题意;故;根据题意,当时,,当时,,又是奇函数,则综上,当时,;根据题意,若存在,使得成立,即在有解,即在有解又由,则在有解设,分析可得上单调递减,又由时,,故即实数m的取值范围是【点睛】本题考查函数的奇偶性的应用,以及指数函数单调性的应用,属于综合题19、(1);(2).【解析】(1)由函数的定义域、指数函数的性质可得,,再由集合的并集运算即可得解;(2)由集合的交集运算可得,再由集合的关系可得,即可得解.【详解】由可得,所以,,(1)所以;(2)因为,所以,所以,解得,所以实数a的取值范围为.【点睛】本题考查了函数定义域及指数不等式的求解,考查了集合的运算及根据集合间的关系求参数,属于基础题.20、(1);(2);(3)投入A商品4万元,B商品1万元,最大收益12万元.【解析】(1)根据直接计算即可.(2)依据题意直接列出式子(3)使用还原并结合二次函数性质可得结果.【小问1详解】由题可知:【小问

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论