广西贺州市平桂高级中学2023年高一数学第一学期期末检测试题含解析_第1页
广西贺州市平桂高级中学2023年高一数学第一学期期末检测试题含解析_第2页
广西贺州市平桂高级中学2023年高一数学第一学期期末检测试题含解析_第3页
广西贺州市平桂高级中学2023年高一数学第一学期期末检测试题含解析_第4页
广西贺州市平桂高级中学2023年高一数学第一学期期末检测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广西贺州市平桂高级中学2023年高一数学第一学期期末检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.若,则值为()A. B.C. D.72.已知函数的部分图象如图所示,下列结论正确的个数是()①②将的图象向右平移1个单位,得到函数的图象③的图象关于直线对称④若,则A.0个 B.1个C.2个 D.3个3.可以化简成()A. B.C. D.4.已知函数f(x)=-log2x,则f(x)的零点所在的区间是()A.(0,1) B.(2,3)C.(3,4) D.(4,+∞)5.在空间四边形的各边上的依次取点,若所在直线相交于点,则A.点必在直线上 B.点必在直线上C.点必在平面外 D.点必在平面内6.已知定义在R上的奇函数满足:当时,.则()A.2 B.1C.-1 D.-27.某集团校为调查学生对学校“延时服务”的满意率,想从全市3个分校区按学生数用分层随机抽样的方法抽取一个容量为的样本.已知3个校区学生数之比为,如果最多的一个校区抽出的个体数是60,那么这个样本的容量为()A. B.C. D.8.若表示空间中两条不重合的直线,表示空间中两个不重合的平面,则下列命题中正确的是()A.若,则 B.若,则C.若,则 D.若,则9.下列四个式子中是恒等式的是()A. B.C. D.10.用二分法求如图所示函数f(x)的零点时,不可能求出的零点是()A.x1 B.x2C.x3 D.x4二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.设扇形的周长为,面积为,则扇形的圆心角的弧度数是________12.已知sinα+cosα=,α∈(-π,0),则tanα=________.13.已知关于的不等式的解集为,其中,则的最小值是___________.14.若sinα<0且tanα>0,则α是第___________象限角15.已知向量满足,且,则与的夹角为_______三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.已知函数是定义域为R的奇函数.(1)求t的值,并写出的解析式;(2)判断在R上的单调性,并用定义证明;(3)若函数在上的最小值为,求k的值.17.已知函数.(1)若,判断函数的零点个数;(2)若对任意实数,函数恒有两个相异的零点,求实数的取值范围;(3)已知且,,求证:方程在区间上有实数根.18.已知函数,(1)若函数在区间上存在零点,求正实数的取值范围;(2)若,,使得成立,求正实数的取值范围19.已知集合,集合.(1)当时,求;(2)若,求实数的取值范围.20.已知,且求的值;求的值21.我们知道:设函数的定义域为,那么“函数的图象关于原点成中心对称图形”的充要条件是“,”.有同学发现可以将其推广为:设函数的定义域为,那么“函数的图象关于点成中心对称图形”的充要条件是“,”.(1)判断函数的奇偶性,并证明;(2)判断函数的图象是否为中心对称图形,若是,求出其对称中心坐标;若不是,说明理由.

参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、B【解析】根据两角和的正切公式,结合同角的三角函数关系式中商关系进行求解即可.【详解】由,所以,故选:B2、C【解析】由函数的图象的顶点坐标求出A,由周期求出,可判断①,由点的坐标代入求得,可得函数的解析式,再根据函数图象的变换规律可判断②,将代入解析式中验证,可判断③;根据三角函数的图象和性质可判断④,即可得到答案【详解】由函数图象可知:,函数的最小正周期为,故,将代入解析式中:,得:由于,故,故①错误;由以上分析可知,将的图象向右平移1个单位,得到函数的图象,故②正确;将代入得,故③错误;由于函数的最小正周期为8,而,故不会出现一个取到最大或最小值另一个取到最小或最大的情况,故,故④正确,故选:C3、B【解析】根据指数幂和根式的运算性质转化即可【详解】解:,故选:B4、C【解析】先判断出函数的单调性,然后得出的函数符号,从而得出答案.【详解】由在上单调递减,在上单调递减所以函数在上单调递减又根据函数f(x)在上单调递减,由零点存在定理可得函数在(3,4)之间存在零点.故选:C5、B【解析】由题意连接EH、FG、BD,则P∈EH且P∈FG,再根据两直线分别在平面ABD和BCD内,根据公理3则点P一定在两个平面的交线BD上【详解】如图:连接EH、FG、BD,∵EH、FG所在直线相交于点P,∴P∈EH且P∈FG,∵EH⊂平面ABD,FG⊂平面BCD,∴P∈平面ABD,且P∈平面BCD,由∵平面ABD∩平面BCD=BD,∴P∈BD,故选B【点睛】本题考查公理3的应用,即根据此公理证明线共点或点共线问题,必须证明此点是两个平面的公共点,可有点在线上,而线在面上进行证明6、D【解析】由奇函数定义得,从而求得,然后由计算【详解】由于函数是定义在R上的奇函数,所以,而当时,,所以,所以当时,,故.由于为奇函数,故.故选:D.【点睛】本题考查奇函数的定义,掌握奇函数的概念是解题关键7、B【解析】利用分层抽样比求解.【详解】因为样本容量为,且3个校区学生数之比为,最多的一个校区抽出的个体数是60,所以,解得,故选:B8、C【解析】利用空间位置关系的判断及性质定理进行判断或举反例判断【详解】对于A,若n⊂平面α,显然结论错误,故A错误;对于B,若m⊂α,n⊂β,α∥β,则m∥n或m,n异面,故B错误;对于C,若m⊥n,m⊥α,n⊥β,则α⊥β,根据面面垂直的判定定理进行判定,故C正确;对于D,若α⊥β,m⊂α,n⊂β,则m,n位置关系不能确定,故D错误故选C【点睛】本题考查了空间线面位置关系的性质与判断,属于中档题9、D【解析】,故错误,故错误,故错误故选10、C【解析】观察图象可知:点x3的附近两旁的函数值都为负值,∴点x3不能用二分法求,故选C.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、【解析】设扇形的半径和弧长分别为,由题设可得,则扇形圆心角所对的弧度数是,应填答案12、.【解析】由题意利用同角三角函数的基本关系,以及三角函数在各个象限中的符号,求得和的值,可得的值.【详解】因为sinα+cosα=,①所以sin2α+cos2α+2sinαcosα=,即2sinαcosα=.因为α∈(-π,0),所以sinα<0,cosα>0,所以sinα-cosα=,与sinα+cosα=联立解得sinα=-,cosα=,所以tanα=.故答案为:.【点睛】该题考查的是有关三角函数恒等变换化简求值问题,涉及到的知识点有同角三角函数关系式,在解题的过程中,注意这三个式子是知一求二,属于简单题目.13、【解析】根据一元二次不等式解集的性质,结合基本不等式、对钩函数的单调性进行求解即可.【详解】因为关于的不等式的解集为,所以是方程的两个不相等的实根,因此有,因为,所以,当且仅当时取等号,即时取等号,,设,因为函数在上单调递增,所以当时,函数单调递增,所以,故答案为:14、第三象限角【解析】当sinα<0,可知α是第三或第四象限角,又tanα>0,可知α是第一或第三象限角,所以当sinα<0且tanα>0,则α是第三象限角考点:三角函数值的象限符号.15、##【解析】根据平面向量的夹角公式即可求出【详解】设与的夹角为,由夹角余弦公式,解得故答案为:三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1)或,;(2)R上单调递增,证明见解析;(3)【解析】(1)是定义域为R的奇函数,利用奇函数的必要条件,求出的值,进而求出,验证是否为奇函数;(2)可判断在上为增函数,用函数的单调性定义加以证明,取两个不等的自变量,对应函数值做差,因式分解,判断函数值差的符号,即可证明结论;(3)由,换元令,,由(2)得,,根据条件转化为在最小值为-2,对二次函数配方,求出对称轴,分类讨论求出最小值,即可求解【详解】解:(1)因为是定义域为R的奇函数,所以,即,解得或,可知,此时满足,所以.(2)在R上单调递增.证明如下:设,则.因为,所以,所以,可得.因为当时,有,所以R单调递增.(3)由(1)可知,令,则,因为是增函数,且,所以.因为在上的最小值为,所以在上的最小值为.因为,所以当时,,解得或(舍去);当时,,不合题意,舍去.综上可知,.【点睛】本题考查函数的奇偶性应用和单调性的证明,考查复合函数的最值,用换元方法,将问题化归为二次函数函数的最值,属于较难题.17、⑴见解析;⑵;⑶见解析.【解析】(1)利用判别式定二次函数的零点个数:(2)零点个数问题转化为图象交点个数问题,利用判别式处理即可;(3)方程在区间上有实数根,即有零点,结合零点存在定理可以证明.试题解析:⑴,当时,,函数有一个零点;当时,,函数有两个零点⑵已知,则对于恒成立,即恒成立;所以,从而解得.⑶设,则,在区间上有实数根,即方程在区间上有实数根.点睛:已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解18、(1)(2)【解析】(1)结合函数的单调性及零点存在定理可得结论;(2)由题意可得在,上,,由函数的单调性求得最值,解不等式可得所求范围【小问1详解】函数,因为在区间上单调递减,又,所以在区间上单调递减,所以在区间上单调递减,若在区间上存在零点,则.【小问2详解】存在,,,使得成立,等价为在,上,由在,递增,可得的最小值为,又,所以在,递减,可得的最大值为,由,解得,所以;综上可得,的范围是19、(1);(2).【解析】(1)先分别求出,然后根据集合的并集的概念求解出的结果;(2)根据得到,由此列出不等式组求解出的取值范围.【详解】(1)当时,,∴;(2)∵,∴,则有:,解之得:.∴实数的取值范围是【点睛】本题考查集合的并集运算以及根据集合的包含关系求解参数范围,难度一般.根据集合间的包含关系求解参数范围时,要注意分析集合为空集的可能.20、(1);(2)【解析】由.,利用同角三角函数关系式先求出,由此能求出的值利用同角三角函数关系式和诱导公式化简为,再化简为关于的齐次分式求值【详解】(1)因为.,所以,故(2)【点睛】本题考查三角函数值的求法,考查同角三角函数关系式和诱导公式等基础知识,考查运算求解能力,属于基础题型21、(1)函数为奇函数,证明见解析(2)是中心对称图形,对称中心坐标为【解析】

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论