广东省深圳市蛇口育才二中2023年高一数学第一学期期末经典模拟试题含解析_第1页
广东省深圳市蛇口育才二中2023年高一数学第一学期期末经典模拟试题含解析_第2页
广东省深圳市蛇口育才二中2023年高一数学第一学期期末经典模拟试题含解析_第3页
广东省深圳市蛇口育才二中2023年高一数学第一学期期末经典模拟试题含解析_第4页
广东省深圳市蛇口育才二中2023年高一数学第一学期期末经典模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省深圳市蛇口育才二中2023年高一数学第一学期期末经典模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.设,且,则()A. B.C. D.2.已知一组数据为20,30,40,50,50,50,70,80,其平均数、第60百分位数和众数的大小关系是()A.平均数=第60百分位数>众数 B.平均数<第60百分位数=众数C.第60百分位数=众数<平均数 D.平均数=第60百分位数=众数3.函数(且)的图像恒过定点()A. B.C. D.4.已知函数,若存在实数,()满足,则的最小值为()A B.C. D.15.已知函数的图像如图所示,则函数与在同一坐标系中的图像是()A. B.C. D.6.若且,则下列不等式中一定成立的是A. B.C. D.7.已知向量,且,则实数=A B.0C.3 D.8.已知函数,,则函数的值域为()A B.C. D.9.空间直角坐标系中,已知点,则线段的中点坐标为A. B.C. D.10.设,,,则()A. B.C. D.11.某数学老师记录了班上8名同学的数学考试成绩,得到如下数据:90,98,100,108,111,115,115,125.则这组数据的分位数是()A.100 B.111C.113 D.11512.下列四个函数中,以π为最小正周期,且在区间上单调递减的是()A. B.C. D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.设是以2为周期的奇函数,且,若,则的值等于___14.函数是定义在上周期为2的奇函数,若,则______15.已知在区间上单调递减,则实数的取值范围是____________.16.已知是定义在R上的奇函数,当时,,则在R上的表达式是________三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.函数的定义域为,定义域为.(1)求;(2)若,求实数的取值范围.18.已知集合,集合.(1)当时,求;(2)命题,命题,若q是p的必要条件,求实数a的取值范围.19.已知函数(1)当时,求该函数的值域;(2)求不等式的解集;(3)若存在,使得不等式成立,求的取值范围20.已知的三个顶点.求:(1)边上高所在的直线方程;(2)边中线所在的直线方程.21.某篮球队在本赛季已结束的8场比赛中,队员甲得分统计的茎叶图如下:(1)求甲在比赛中得分均值和方差;(2)从甲比赛得分在分以下场比赛中随机抽取场进行失误分析,求抽到场都不超过均值的概率22.某兴趣小组要测量钟楼的高度(单位:).如示意图,垂直放置的标杆的高度为,仰角.(1)该小组已测得一组的值,算出了,请据此算出的值(精确到);(2)该小组分析测得的数据后,认为适当调整标杆到钟楼的距离(单位:),使与之差较大,可以提高测量精度.若钟楼的实际高度为,试问为多少时,最大?

参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、C【解析】将等式变形后,利用二次根式的性质判断出,即可求出的范围.【详解】即故选:C【点睛】此题考查解三角函数方程,恒等变化后根据的关系即可求解,属于简单题目.2、B【解析】从数据为20,30,40,50,50,50,70,80中计算出平均数、第60百分位数和众数,进行比较即可.【详解】解:平均数为,,第5个数50即为第60百分位数.又众数为50,它们的大小关系是平均数第60百分位数众数.故选:B.3、C【解析】本题可根据指数函数的性质得出结果.【详解】当时,,则函数的图像恒过定点,故选:C.4、A【解析】令=t,分别解得,,得到,根据参数t的范围求得最小值.【详解】当0≤x≤2时,0≤x2≤4,当2<x≤3时,2<3x-4≤5,则[0,4]∩(2,5]=(2,4],令=t∈(2,4],则,,∴,当,即时,有最小值,故选:A.5、B【解析】由函数的图象可得,函数的图象过点,分别代入函数式,,解得,函数与都是增函数,只有选项符合题意,故选B.【方法点晴】本题通过对多个图象的选择考查函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.6、D【解析】利用不等式的性质逐个检验即可得到答案.【详解】A,a>b且c∈R,当c小于等于0时不等式不成立,故错误;Ba,b,c∈R,且a>b,可得a﹣b>0,当c=0时不等式不成立,故错误;,C,举反例,a=2,b=-1满足a>b,但不满足,故错误;D,将不等式化简即可得到a>b,成立,故选D.【点睛】本题主要考查不等式的性质以及排除法的应用,属于简单题.用特例代替题设所给的一般性条件,得出特殊结论,然后对各个选项进行检验,从而做出正确的判断,这种方法叫做特殊法.若结果为定值,则可采用此法.特殊法是“小题小做”的重要策略.常用的特例有特殊数值、特殊数列、特殊函数、特殊图形、特殊角、特殊位置等7、C【解析】由题意得,,因为,所以,解得,故选C.考点:向量的坐标运算.8、B【解析】先判断函数的单调性,再利用单调性求解.【详解】因为,在上都是增函数,由复合函数的单调性知:函数,在上为增函数,所以函数的值域为,故选:B9、A【解析】点,由中点坐标公式得中得为:,即.故选A.10、C【解析】根据指数函数和对数函数的单调性判断,,的范围即可比较的大小.【详解】因为,即,,即,,即,所以,故选:C.11、D【解析】根据第p百分位数的定义直接计算,再判断作答.【详解】由知,这组数据的分位数是按从小到大排列的第6个位置的数,所以这组数据的分位数是115.故选:D12、B【解析】先判断各函数最小正周期,再确定各函数在区间上单调性,即可选择判断【详解】对于A,最小正周期为2π,在区间上单调递减,不合题意;对于B,最小正周期为π,在区间上单调递减,符合题意;对于C,最小正周期为2π,在区间上单调递减,不合题意;对于D,最小正周期为π,在区间上单调递增,不合题意;故选:B.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、【解析】先利用求得的值,再依据题给条件用来表示,即可求得的值【详解】∵,∴,又∵是以2为周期的奇函数,∴故答案为:14、1【解析】根据给定条件利用周期性、奇偶性计算作答.【详解】因函数是上周期为2的奇函数,,所以.故答案为:1【点睛】易错点睛:函数f(x)是周期为T周期函数,T是与x无关的非零常数,且周期函数不一定有最小正周期.15、【解析】根据复合函数单调性的判断方法,结合对数函数的定义域,即可求得的取值范围.【详解】在区间上单调递减由对数部分为单调递减,且整个函数单调递减可知在上单调递增,且满足所以,解不等式组可得即满足条件的取值范围为故答案为:【点睛】本题考查了复合函数单调性的应用,二次函数的单调性,对数函数的性质,属于中档题.16、【解析】根据奇函数定义求出时的解析式,再写出上的解析式即可【详解】时,,,所以故答案为:【点睛】本题考查函数的奇偶性,掌握奇函数的定义是解题关键三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1);(2).【解析】(1)求函数的定义域,就是求使得根式有意义的自变量的取值范围,然后求解分式不等式即可;(2)因为,所以一定有,从而得到,要保证,由它们的端点值的大小列式进行计算,即可求得结果.【详解】(1)要使函数有意义,则需,即,解得或,所以;(2)由题意可知,因为,所以,由,可求得集合,若,则有或,解得或,所以实数的取值范围是.【点睛】该题考查的是有关函数的定义域的求解,以及根据集合之间的包含关系确定参数的取值范围的问题,属于简单题目.18、(1);(2)【解析】(1)根据集合交集的定义,结合一元二次不等式解法进行求解即可;(2)根据必要条件对应的集合关系进行求解即可;【详解】解:由题意可知,;(1)当时,,所以(2)是的必要条件,,.19、(1);(2)或;(3)【解析】(1)令,函数化为,结合二次函数的图象与性质,即可求解;(2)由题意得到,令,得到,求得不等式的解集,进而求得不等式的解集,得到答案;(3)令,转化为存在使得成立,结合函数的单调性,求得函数最小值,即可求解.【详解】(1)令,因为,则,函数化为,,所以在上单调递减,在上单调递增,所以当时,取到最小值为,当时,取到最大值为5,故当时,函数的值域为(2)由题意,不等式,即,令,则,即,解得或,当时,即,解得;当时,即,解得,故不等式的解集为或(3)由于存在使得不等式成立,令,,则,即存在使得成立,所以存在使得成立因为函数在上单调递增,也在上单调递增,所以函数在上单调递增,它的最小值为0,所以,所以的取值范围是20、(1);(2).【解析】(1)利用相互垂直的直线斜率之间的关系可得高所在的直线的斜率,进而得出点斜式(2)利用中点坐标公式可得边的中点,利用两点式即可得出【详解】解:(1)又因为垂直,直线的方程为,即;(2)边中点E,中线的方程为,即.【点睛】本题考查了相互垂直的直线斜率之间的关系、中点坐标公式、两点式、一般式,考查了推理能力与计算能力,属于基础题21、(1)15,32.25(2)【解析】(1)由已知中的茎叶图,代入平均数和方差公式,可得得答案;(2)根据古典概型计算即可求解.【详解】(1)这8场比赛队员甲得分为:7,8,10,15,17,19,21,23故平均数为:,方差:.(2)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论