版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省龙城高级中学2023年数学高一上期末考试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.一条侧棱垂直于底面的三棱锥P﹣ABC的三视图不可能是()A.直角三角形B.等边三角形C.菱形D.顶角是90°的等腰三角形2.已知函数,若,则实数的取值范围是A. B.C. D.3.函数在一个周期内的图像如图所示,此函数的解析式可以是()A. B.C. D.4.下列函数中既是偶函数,又在上单调递增的是()A B.C. D.5.已知函数是上的偶函数,且在区间上是单调递增的,,,是锐角三角形的三个内角,则下列不等式中一定成立的是A. B.C. D.6.下列结论正确的是()A.若,则 B.若,则C.若,则 D.若,则7.已知,则下列结论正确的是()A. B.C. D.8.公元前6世纪,古希腊的毕达哥拉斯学派通过研究正五边形和正十边形的作图,发现了黄金分割值约为0.618,这一数值也可以表示为.若.则()A. B.C.2 D.9.若角的终边经过点,则A. B.C. D.10.如图,在平面直角坐标系中,角的始边为轴的非负半轴,终边与单位圆的交点为,将绕坐标原点逆时针旋转至,过点作轴的垂线,垂足为.记线段的长为,则函数的图象大致是A. B.C. D.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.设,,,则______12.函数是奇函数,则实数__________.13.已知偶函数,x∈R,满足f(1-x)=f(1+x),且当0<x<1时,f(x)=ln(x+),e为自然数,则当2<x<3时,函数f(x)的解析式为______14.若函数,则________15.要制作一个容器为4,高为无盖长方形容器,已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是_______(单位:元)三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.甲、乙两家商场对同一种商品开展促销活动,对购买该商品的顾客两家商场的奖励方案如下:甲商场:顾客转动如图所示圆盘,当指针指向阴影部分(图中四个阴影部分均为扇形,且每个扇形圆心角均为,边界忽略不计)即为中奖.乙商场:从装有3个白球3个红球的盒子中一次性摸出2个球(球除颜色外不加区分),如果摸到的是2个红球,即为中奖.问:购买该商品的顾客在哪家商场中奖的可能性大?17.已知函数(,且).(1)若函数在上的最大值为2,求的值;(2)若,求使得成立的的取值范围.18.已知角在第二象限,且(1)求的值;(2)若,且为第一象限角,求的值19.设函数.(1)若,且均为正实数,求的最小值,并确定此时实数的值;(2)若满足在上恒成立,求实数的取值范围.20.已知函数.(1)求的周期和单调区间;(2)若,,求的值.21.在体育知识有奖问答竞赛中,甲、乙、丙三人同时回答一道有关篮球知识的问题,已知甲答题正确的概率是,乙答题错误的概率是,乙、丙两人都答题正确的概率是,假设每人答题正确与否是相互独立的(1)求丙答题正确的概率;(2)求甲、丙都答题错误,且乙答题正确的概率
参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、C【解析】直接利用空间图形和三视图之间的转换的应用求出结果【详解】由于三棱锥P﹣ABC的一条侧棱垂直于底面,所以无论怎样摆放,该三视图都为三角形,不可能为菱形故选:C【点睛】本题考查三视图和几何体之间的转换,主要考查学生的空间想象能力,属于基础题2、D【解析】画出图象可得函数在实数集R上单调递增,故由,可得,即,解得或故实数的取值范围是.选D3、A【解析】根据图象,先确定以及周期,进而得出,再由求出,即可得到函数解析式.【详解】显然,因为,所以,所以,由得,所以,即,,因为,所以,所以.故选:A4、C【解析】根据常见函数的单调性和奇偶性,即可容易判断选择.【详解】根据题意,依次分析选项:对于A,,奇函数,不符合题意;对于B,,为偶函数,在上单调递减,不符合题意;对于C,,既是偶函数,又在上单调递增,符合题意;对于D,为奇函数,不符合题意;故选:C.【点睛】本题考查常见函数单调性和奇偶性的判断,属简单题.5、C【解析】因为是锐角的三个内角,所以,得,两边同取余弦函数,可得,因为在上单调递增,且是偶函数,所以在上减函数,由,可得,故选C.点睛:本题考查了比较大小问题,解答中熟练推导抽象函数的图象与性质,合理利用函数的单调性进行比较大小是解答的关键,着重考查学生的推理与运算能力,本题的解答中,根据锐角三角形,得出与的大小关系是解答的一个难点.6、A【解析】AD选项,可以用不等式基本性质进行证明;BC选项,可以用举出反例.【详解】,显然均大于等于0,两边平方得:,A正确;当时,满足,但,B错误;若,当时,则,C错误;若,,则,D错误.故选:A7、B【解析】先求出,再对四个选项一一验证即可.【详解】因为,又,解得:.故A错误;对于B:,故B正确;对于C:,故C错误;对于D:,故D错误.故选:B8、A【解析】由已知、同角三角函数关系、辅助角公式及诱导公式可得解.【详解】由得,∴.故选:A.9、C【解析】根据三角函数定义可得,判断符号即可.【详解】解:由三角函数的定义可知,符号不确定,,故选:C【点睛】任意角的三角函数值:(1)角与单位圆交点,则;(2)角终边任意一点,则.10、B【解析】,所以选B.点睛:有关函数图象识别问题的常见题型及解题思路(1)由解析式确定函数图象的判断技巧:(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;②由函数的单调性,判断图象的变化趋势;③由函数的奇偶性,判断图象的对称性;④由函数的周期性,判断图象的循环往复.(2)由实际情景探究函数图象.关键是将问题转化为熟悉的数学问题求解,要注意实际问题中的定义域问题.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、【解析】利用向量的坐标运算先求出的坐标,再利用向量的数量积公式求出的值【详解】因为,,,所以,所以,故答案为【点睛】本题考查向量的坐标运算,考查向量的数量积公式,熟记坐标运算法则,准确计算是关键,属于基础题12、【解析】根据给定条件利用奇函数的定义计算作答.【详解】因函数是奇函数,其定义域为R,则对,,即,整理得:,而不恒为0,于得,所以实数.故答案为:13、【解析】由f(1-x)=f(1+x),再由偶函数性质得到函数周期,再求当2<x<3时f(x)解析式【详解】因为f(x)是偶函数,满足f(1-x)=f(1+x),所以f(1+x)=f(x-1),所以f(x)周期是2当2<x<3时,0<x-2<1,所以f(x-2)=ln(x-2+)=f(x),所以函数f(x)的解析式为f(x)=ln(x-2+)故答案为f(x)=ln(x-2+)【点睛】本题主要考查函数的奇偶性,考查利用函数的周期性求解析式,意在考查学生对这些知识的理解掌握水平和分析推理能力.14、0【解析】令x=1代入即可求出结果.【详解】令,则.【点睛】本题主要考查求函数的值,属于基础题型.15、160【解析】设底面长方形的长宽分别为和,先求侧面积,进一步求出总的造价,利用基本不等式求出最小值.【详解】设底面长方形的长宽分别为和,则,所以总造价当且仅当的时区到最小值则该容器的最低总造价是160.故答案为:160.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、乙商场中奖的可能性大.【解析】分别计算两种方案中奖的概率.先记出事件,得到试验发生包含的所有事件,和符合条件的事件,由等可能事件的概率公式得到试题解析:如果顾客去甲商场,试验的全部结果构成的区域为圆盘的面积,阴影部分的面积为,则在甲商场中奖的概率为;如果顾客去乙商场,记3个白球为,,,3个红球为,,,记(,)为一次摸球的结果,则一切可能的结果有:,,,,,,,,,,,,,,,共15种,摸到的是2个红球有,,,共3种,则在乙商场中奖的概率为,又,则购买该商品的顾客在乙商场中奖的可能性大.17、(1)或;(2)【解析】(1)分类讨论和两种情况,结合函数的单调性可得:或;(2)结合函数的解析式,利用指数函数的单调性可得,求解对数不等式可得的取值范围是.试题解析:(1)当时,在上单调递增,因此,,即;当时,上单调递减,因此,,即.综上,或.(2)不等式即.又,则,即,所以.18、(1)(2)【解析】(1)利用同角三角函数关系可求解得,利用诱导公式化简原式可得原式,代入即得解;(2)利用同角三角函数关系可得,又,利用两角差的正弦公式,即得解【小问1详解】因为,且在第二象限,故,所以,原式【小问2详解】由题意有故,19、(1)的最小值为3,此时;(2)【解析】(1)由可得,则由结合基本不等式即可求出;(2)不等式恒成立等价于对恒成立,利用判别式可得对恒成立,再利用判别式即可求出的范围.【详解】(1),则,,当且仅当,即时等号成立,的最小值为3,此时;(2),则,即对恒成立,则,即对恒成立,则,解得.【点睛】本题考查基本不等式的应用,考查一元二次不等式的恒成立问题,属于中档题.20、(1)周期为,增区间为,减区间为;(2).【解析】(1)利用三角恒等变换思想可得出,利用周期公式可求出函数的周期,分别解不等式和,可得出该函数的增区间和减区间;(2)由可得出,利用同角三角函数的平方关系求出的值,然后利用两角差的余弦公式可求出的值.详解】(1),所以,函数的周期为,令,解得;令,解得.因此,函数的增区间为,减区间为;(2),,,,,.【点睛】本题考查正弦型函数周期和单调区间的求解,同时也考查了利用两角差的余弦公式求值,考查运算求解能力,属于中等题.2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 药品销售顾问聘用合同
- 理发店等候区空调租赁合同
- 山西省港口设施施工合同范本
- 服装品牌设计总监聘用合同
- 广播电视消防设施升级合同
- 辽宁省农村公路养护手册
- 2025版智慧城市建设企业股东变更与大数据应用协议3篇
- 2025版物流配送中心智能化改造承包合同3篇
- 2024年物业小区增值服务管理合同3篇
- 2025版驾校与驾驶模拟器生产企业合作推广协议3篇
- 北京市石景山区2023-2024学年七年级上学期期末考试数学试卷(含答案)
- 2025版寒假特色作业
- Unit 7 Will people have robots Section B 1a-1e 教学实录 2024-2025学年人教版英语八年级上册
- 江西省吉安市2023-2024学年高一上学期1月期末考试政治试题(解析版)
- 国内外航空安全形势
- 《雷达原理》课件-1.1.6教学课件:雷达对抗与反对抗
- 2024年版汽车4S店商用物业租赁协议版B版
- 微信小程序云开发(赤峰应用技术职业学院)知到智慧树答案
- 辽宁省抚顺市清原县2024届九年级上学期期末质量检测数学试卷(含解析)
- 2024-2025学年上学期福建高二物理期末卷2
- 2024四川阿坝州事业单位和州直机关招聘691人历年管理单位遴选500模拟题附带答案详解
评论
0/150
提交评论