版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届浙江省绍兴市高级中学高一上数学期末预测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.已知全集,,,则集合A. B.C. D.2.已知函数,则下列结论错误的是()A.的一个周期为 B.的图象关于直线对称C.的一个零点为 D.在区间上单调递减3.过点和,圆心在轴上的圆的方程为A. B.C D.4.如图所示,观察四个几何体,其中判断错误的是()A.不是棱台 B.不是圆台C.不是棱锥 D.是棱柱5.角的终边落在()A.第一象限 B.第二象限C.第三象限 D.第四象限6.已知奇函数的定义域为,其图象是一条连续不断的曲线.若,则函数在区间内的零点个数至少为()A.1 B.2C.3 D.47.已知命题:,总有,则命题的否定为()A.,使得 B.,使得C.,总有 D.,总有8.已知定义域为R的偶函数在上是减函数,且,则不等式的解集为()A. B.C. D.9.已知定义域为的函数满足,且,若,则()A. B.C. D.10.已知集合,则()A B.C. D.11.已知,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件12.已知函数的图象上关于轴对称的点至少有3对,则实数的取值范围是A. B.C. D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.已知函数集合,若集合中有3个元素,则实数的取值范围为________14.已知角的终边过点,则__________15.已知为三角形的边的中点,点满足,则实数的值为_______16.若直线上存在满足以下条件的点:过点作圆的两条切线(切点分别为),四边形的面积等于,则实数的取值范围是_______三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.已知函数.(1)若函数在上至少有一个零点,求的取值范围;(2)若函数在上最大值为3,求的值.18.化简下列各式:(1);(2).19.直线l经过两点(2,1)、(6,3).(1)求直线l的方程;(2)圆C的圆心在直线l上,并且与x轴相切于(2,0)点,求圆C的方程20.已知向量,,函数,且的图像过点.(1)求的值;(2)将的图像向左平移个单位后得到函数的图像,若图像上各点最高点到点的距离的最小值为1,求的单调递增区间.21.已知在第一象限,若,,,求:(1)边所在直线的方程;22.如图,在四棱锥中,侧面底面,侧棱,底面为直角梯形,其中为中点.(1)求证:平面;(2)求异面直线与所成角的余弦值;(3)线段上是否存在,使得它到平面的距离为?若存在,求出的值.
参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、D【解析】因为A∪B={x|x≤0或x≥1},所以,故选D.考点:集合的运算.2、B【解析】根据周期求出f(x)最小正周期即可判断A;判断是否等于1或-1即可判断是否是其对称轴,由此判断B;判断否为0即可判断C;,根据复合函数单调性即可判断f(x)单调性,由此判断D.【详解】函数,最小正周期为故A正确;,故直线不是f(x)的对称轴,故B错误;,则,∴C正确;,∴f(x)在上单调递减,故D正确.故选:B.3、D【解析】假设圆心坐标,利用圆心到两点距离相等可求得圆心,再利用两点间距离公式求得半径,从而得到圆的方程.【详解】设圆心坐标为:则:,解得:圆心为,半径所求圆的方程为:本题正确选项:【点睛】本题考查已知圆心所在直线和圆上两点求解圆的方程的问题,属于基础题.4、C【解析】利用几何体的定义解题.【详解】A.根据棱台的定义可知几何体不是棱台,所以A是正确的;B.根据圆台的定义可知几何体不是圆台,所以B是正确的;C.根据棱锥的定义可知几何体是棱锥,所以C是错误的;D.根据棱柱的定义可知几何体是棱柱,所以D是正确的.故答案为C【点睛】本题主要考查棱锥、棱柱、圆台、棱台的定义,意在考查学生对这些知识的掌握水平和分析推理能力.5、A【解析】由于,所以由终边相同的定义可得结论【详解】因为,所以角的终边与角的终边相同,所以角的终边落在第一象限角故选:A6、C【解析】根据奇函数的定义域为R可得,由和奇函数的性质可得、,利用零点的存在性定理即可得出结果.【详解】奇函数的定义域为R,其图象为一条连续不断的曲线,得,由得,所以,故函数在之间至少存在一个零点,由奇函数的性质可知函数在之间至少存在一个零点,所以函数在之间至少存在3个零点.故选:C7、B【解析】根据全称命题的否定性质进行判断即可.【详解】因为全称命题的否定是特称命题,所以命题的否定为,使得,故选:B8、A【解析】根据偶函数的性质可得在上是增函数,且.由此将不等式转化为来求解得不等式的解集.【详解】因为偶函数在上是减函数,所以在上是增函数,由题意知:不等式等价于,即,即或,解得:或.故选:A【点睛】本小题主要考查函数的奇偶性以及单调性,考查对数不等式的解法,属于中档题.9、A【解析】根据,,得到求解.【详解】因为,,所以,所以,所以,所以,,故选:A10、D【解析】利用元素与集合的关系判断即可.【详解】由集合,即集合是所有的偶数构成的集合.所以,,,故选:D11、A【解析】先判断“”成立时,“”是否成立,反之,再看“”成立,能否推出“”,即可得答案.【详解】“”成立时,,故“”成立,即“”是“”的充分条件;“”成立时,或,此时推不出“”成立,故“”不是“”的必要条件,故选:A.12、D【解析】本题首先可以求出函数关于轴对称的函数的解析式,然后根据题意得出函数与函数的图像至少有3个交点,最后根据图像计算得出结果【详解】若,则,因为时,,所以,所以若关于轴对称,则有,即,设,画出函数的图像,结合函数的单调性和函数图像的凹凸性可知对数函数与三角函数在点处相交为临界情况,即要使与的图像至少有3个交点,需要且满足,即,解得,故选D【点睛】本题考查的是函数的对称性、对数函数以及三角函数的相关性质,主要考查如何根据函数对称性来求出函数解析式,考查学生对对数函数以及三角函数的图像的理解,考查推理能力,考查数形结合思想,是难题二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、或【解析】令,记的两根为,由题知的图象与直线共有三个交点,从而转化为一元二次方程根的分布问题,然后可解.【详解】令,记的零点为,因为集合中有3个元素,所以的图象与直线共有三个交点,则,或或当时,得,,满足题意;当时,得,,满足题意;当时,,解得.综上,t的取值范围为或.故答案为:或14、【解析】∵角的终边过点(3,-4),∴x=3,y=-4,r=5,∴cos=故答案为15、【解析】根据向量减法的几何意义及向量的数乘便可由得出,再由D为△ABC的边BC的中点及向量加法的平行四边形法则即可得出点D为AP的中点,从而便可得出,这样便可得出λ的值【详解】=,所以,D为△ABC的边BC中点,∴∴如图,D为AP的中点;∴,又,所以-2.故答案为-2.【点睛】本题考查向量减法的几何意义,向量的数乘运算,及向量数乘的几何意义,向量加法的平行四边形法则,共线向量基本定理,属于中档题.16、【解析】通过画出图形,可计算出圆心到直线的最短距离,建立不等式即可得到的取值范围.【详解】作出图形,由题意可知,,此时,四边形即为,而,故,勾股定理可知,而要是得存在点P满足该条件,只需O到直线的距离不大于即可,即,所以,故的取值范围是.【点睛】本题主要考查直线与圆的位置关系,点到直线的距离公式,意在考查学生的转化能力,计算能力,分析能力,难度中等.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1);(2)或.【解析】(1)由函数在至少有一个零点,方程至少有一个实数根,,解出即可;(2)通过对区间端点与对称轴顶点的横坐标的大小比较,再利用二次函数的单调性即可得出函数在上的最大值,令其等于可得结果.试题解析:(1)由.(2)化简得,当,即时,;当,即时,,,(舍);当,即时,,综上,或.18、(1)0(2)1【解析】(1)由诱导公式化简计算;(2)由诱导公式化简即可得解【小问1详解】;【小问2详解】19、(1)x-2y=0;(2)(x-2)2+(y-1)2=1【解析】(1)由直线过的两点坐标求得直线斜率,在借助于点斜式方程可得到直线方程;(2)借助于圆的几何性质可知圆心在直线上,又圆心在直线上,从而可得到圆心坐标,圆心与的距离为半径,进而可得到圆的方程试题解析:(1)由已知,直线的斜率,所以,直线的方程为.(2)因为圆的圆心在直线上,可设圆心坐标为,因圆与轴相切于点,所以圆心在直线上,所以,所以圆心坐标为,半径为1,所以,圆的方程为考点:1.直线方程;2.圆的方程20、(1);(2).【解析】(1)利用两个向量的数量积公式,两角和的正弦公式化简函数的解析式,再把点代入,求得的值(2)根据函数的图象变换规律求得的解析式,再利用正弦函数的单调性,求得的单调递增区间【详解】(1)已知,过点解得:;(2)左移后得到设的图象上符合题意的最高点为,解得,解得,,,的单调增区间为.【点睛】本题主要考查了三角函数与向量的简单运算知识点,以及函数的图象变换,属于中档题.21、(1);(2)或.【解析】(1)直接写出直线方程得解;(2)求出直线的斜率即得解.小问1详解】解:因为,,所以直线所在直线方程为.【小问2详解】解:当点在直线上方时,由题得直线的斜率为,所以边所在直线点斜式方程为;当点在直线下方时,由题得直线的斜率为,所以边所在直线的点斜式方程为.综合得直线的方程为或.22、(1)见解析;(2);(3)存在,..【解析】(1)根据线面垂直的判定定理可知,只需证直线PO垂直平面ABCD中的两条相交直线垂直即可;(2)先通过平移将两条异面直线平移到同一个起点B,得到的锐角或直角就是异面直线所成的角,在三
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《唯美模板》课件
- 《礼仪插花的应用》课件
- 单位管理制度集粹汇编人员管理十篇
- 《离合器检修》课件
- 单位管理制度汇编大合集人事管理十篇
- 单位管理制度分享汇编【人力资源管理】十篇
- 单位管理制度分享大全职员管理篇
- 单位管理制度范例选集职员管理篇十篇
- 《中级计量经济学》课程教学大纲 (二)
- 八下期中测试卷02【测试范围:第1-11课】(原卷版)
- 过敏性紫癜课件PPT
- 浙江省绍兴市诸暨市2023-2024学年数学三上期末达标检测试题含答案
- 脚手架质量验收标准
- 小学思政课《爱国主义教育》
- 中药材的性状及真伪鉴别培训-课件
- 泵站项目划分
- 绿化养护工作检查及整改记录表
- 新能源发电技术学习通课后章节答案期末考试题库2023年
- GB/T 42752-2023区块链和分布式记账技术参考架构
- Module 9 (教案)外研版(一起)英语四年级上册
- 初中物理-初三物理模拟试卷讲评课教学课件设计
评论
0/150
提交评论