版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届西藏日喀则市第一高级中学高一数学第一学期期末检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.纳皮尔是苏格兰数学家,其主要成果有球面三角中纳皮尔比拟式、纳皮尔圆部法则(1614)和纳皮尔算筹(1617),而最大贡献是对数的发明,著有《奇妙的对数定律说明书》,并且发明了对数尺,可以利用对数尺查询出任意一对数值.现将物体放在空气中冷却,如果物体原来的温度是(℃),空气的温度是(℃),经过t分钟后物体的温度T(℃)可由公式得出,如温度为90℃的物体,放在空气中冷却2.5236分钟后,物体的温度是50℃,若根据对数尺可以查询出,则空气温度是()A.5℃ B.10℃C.15℃ D.20℃2.下列命题正确的是A.若两条直线和同一个平面所成的角相等,则这两条直线平行B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行3.若函数(,且)在区间上单调递增,则A., B.,C., D.,4.函数的定义城为()A B.C. D.5.定义在上的偶函数在时为增函数,若实数满足,则的取值范围是A. B.C. D.6.“”是“函数在内单调递增”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要7.从数字中随机取两个不同的数,分别记为和,则为整数的概率是()A. B.C. D.8.函数的最大值为()A. B.C. D.9.已知是上的奇函数,且当时,,则当时,()A. B.C. D.10.若一个三角形采用斜二测画法作直观图,则其直观图的面积是原来三角形面积的()倍.A B.C. D.2二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.若偶函数在区间上单调递增,且,,则不等式的解集是___________.12.函数,的图象恒过定点P,则P点的坐标是_____.13.已知幂函数的图像过点,则___________.14.若函数,,则_________;当时,方程的所有实数根的和为__________.15.设函数且是定义域为的奇函数;(1)若,判断的单调性并求不等式的解集;(2)若,且,求在上的最小值三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.已知定义在上的奇函数(1)求的值;(2)用单调性的定义证明在上是增函数;(3)若,求的取值范围.17.某生物研究者于元旦在湖中放入一些凤眼莲(其覆盖面积为k),这些凤眼莲在湖中的蔓延速度越来越快,二月底测得凤眼莲的覆盖面积为,三月底测得凤眼的覆盖面积为,凤眼莲的覆盖面积y(单位:)与月份x(单位:月)的关系有两个函数模型与可供选择(1)试判断哪个函数模型更合适并说明理由,求出该模型的解析式;(2)求凤眼莲的覆盖面积是元旦放入凤眼莲面积10倍以上的最小月份.(参考数据:)18.已知正方体ABCD-的棱长为2.(1)求三棱锥的体积;(2)证明:.19.计算(1)-(2)20.已知函数.(1)求函数的最小正周期及其单调递减区间;(2)若,是函数的零点,不写步骤,直接用列举法表示的值组成的集合.21.已知函数.(1)用“五点法”做出函数在上的简图;(2)若方程在上有两个实根,求a的取值范围.
参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、B【解析】依题意可得,即,即可得到方程,解得即可;【详解】:依题意,即,又,所以,即,解得;故选:B2、C【解析】若两条直线和同一平面所成角相等,这两条直线可能平行,也可能为异面直线,也可能相交,所以A错;一个平面不在同一条直线的三点到另一个平面的距离相等,则这两个平面平行,故B错;若两个平面垂直同一个平面两平面可以平行,也可以垂直;故D错;故选项C正确.[点评]本题旨在考查立体几何的线、面位置关系及线面的判定和性质,需要熟练掌握课本基础知识的定义、定理及公式.3、B【解析】函数在区间上单调递增,在区间内不等于,故当时,函数才能递增故选4、C【解析】由对数函数的性质以及根式的性质列不等式组,即可求解.【详解】由题意可得解得,所以原函数的定义域为,故选:C5、C【解析】因为定义在上的偶函数,所以即又在时为增函数,则,解得故选点睛:本题考查了函数的奇偶性,单调性和运用,考查对数不等式的解法及运算能力,所求不等式中与由对数式运算法则可知互为相反数,与偶函数的性质结合可将不等式化简,借助函数在上是增函数可确定在为减函数,利用偶函数的对称性可得到自变量的范围,从而求得关于的不等式,结合对数函数单调性可得到的取值范围6、A【解析】由函数在内单调递增得,进而根据充分,必要条件判断即可.【详解】解:因为函数在内单调递增,所以,因为是的真子集,所以“”是“函数在内单调递增”的充分而不必要条件故选:A7、B【解析】先计算出从数字中随机取两个不同的数,共有种情况,再求出满足为整数的情况,即可求出为整数的概率.【详解】解:从数字中随机取两个不同的数,则有种选法,有种选法,共有种情况;则满足为整数的情况如下:当时,或有种情况;当时,有种情况;当或时,则不可能为整数,故共有种情况,故为整数的概率是:.故选:B.8、C【解析】先利用辅助角公式化简,再由正弦函数的性质即可求解.【详解】,所以当时,取得最大值,故选:C9、B【解析】设,则,求出的解析式,根据函数为上的奇函数,即可求得时,函数的解析式,得到答案.【详解】由题意,设,则,则,因为函数为上的奇函数,则,得,即当时,.故选:B.【点睛】本题主要考查了利用函数的奇偶性求解函数的解析式,其中解答中熟记函数的奇偶性,合理计算是解答的关键,着重考查了推理与运算能力,属于基础题.10、A【解析】以三角形的一边为x轴,高所在的直线为y轴,由斜二测画法看三角形底边长和高的变化即可【详解】以三角形的一边为x轴,高所在的直线为y轴,由斜二测画法知,三角形的底长度不变,高所在的直线为y′轴,长度减半,故三角形的高变为原来的,故直观图中三角形面积是原三角形面积的.故选:A.【点睛】本题考查平面图形的直观图,由斜二测画法看三角形底边长和高的变化即可,属于基础题.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、【解析】根据题意,结合函数的性质,分析可得在区间上的性质,即可得答案.【详解】因为偶函数在区间上单调递增,且,,所以在区间上单调上单调递减,且,所以的解集为.故答案为:12、【解析】令,解得,且恒成立,所以函数的图象恒过定点;故填.13、【解析】先设幂函数解析式,再将代入即可求出的解析式,进而求得.【详解】设,幂函数的图像过点,,,,故答案为:14、①.0②.4【解析】直接计算,可以判断的图象和的图象都关于点中心对称,所以所以两个函数图象的交点都关于点对称,数形结合即可求解.【详解】因为,所以,分别作出函数与的图象,图象的对称中心为,令,可得,当时,,所以的对称中心为,所以两个函数图象的交点都关于点对称,当时,两个函数图象有个交点,设个交点的横坐标分别为,,,,且,则,,所以,所以方程的所有实数根的和为,故答案为:,【点睛】关键点点睛:本题的关键点是判断出的图象和的图象都关于点中心对称,作出函数图象可知两个函数图象有个交点,设个交点的横坐标分别为,,,,且,则和关于中心对称,和关于中心对称,所以,,即可求解.15、(1)是增函数,解集是(2)【解析】(1)根据函数为奇函数,求得,得到,由,求得,得到是增函数,把不等式转化为,结合单调性,即可求解;(2)由,求得,得到,得出,令,结合指数函数的性质和换元法,即可求解.【小问1详解】解:因为函数且是定义域为的奇函数,可得,即,可得,所以,即,由,可得且且,解得,所以是增函数,又由,可得,所以,解得,所以不等式的解集是【小问2详解】解:由函数,因为,即且,解得,所以,由,令,则由(1)得在上是增函数,故,则在单调递增,所以函数的最小值为,即在上最小值为.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1)(2)证明见解析(3)【解析】(1)由是定义在上的奇函数知,由此即可求出结果;(2)根据函数单调递增的定义证明即可;(3)根据函数的奇偶性和单调性,可得,解不等式,即可得到结果.【小问1详解】解:由是定义在上的奇函数知,,经检验知当时,是奇函数,符合题意.故.【小问2详解】解:设,且,则,故在上是增函数.【小问3详解】解:由(2)知奇函数在上是增函数,故或,所以满足的实数的取值范围是.17、(1)理由见解析,函数模型为;(2)六月份.【解析】(1)由凤眼莲在湖中的蔓延速度越来越快,故选符合要求,根据数据时,时代入即可得解;(2)首先求时,可得元旦放入凤眼莲的覆盖面积是,解不等式即可得解.【详解】(1)两个函数与在上都是增函数,随着的增加,指数型函数的值增加速度越来越快,而函数的值增加越来越慢,由凤眼莲在湖中的蔓延速度越来越快,故选符合要求;由时,由时,可得,解得,故该函数模型的解析式为;(2)当时,,元放入凤眼莲的覆盖面积是,由,得所以,由,所以.所以凤眼莲的覆盖面积是元旦放入凤眼莲面积10倍以上的最小月份是六月份.18、(1)(2)证明见解析【解析】(1)将问题转化为求即可;(2)根据线面垂直证明线线垂直.【小问1详解】在正方体ABCD-中,易知⊥平面ABD,∴.【小问2详解】证明:在正方体中,易知,∵⊥平面ABD,平面ABD,∴.又∵,、平面,∴BD⊥平面.又平面,∴19、(1);(2).【解析】(1)综合利用指数对数运算法则运算;(2)利用对数的运算法则化简运算.【详解】解:(1)原式;(2)原式【点睛】本题考查指数对数的运算,属基础题,在指数运算中,往往先将幂化为指数幂,然后利用指数幂的运算法则化简;在对数的运算中,要注意的运用和对数有关公式的运用.20、(1)的最小正周期为,单调递减区间是(2)【解析】(1)根据正弦函数的最小正周期公式计算可得,根据正弦函数的单调性求出函数的单调区间.(2)先求出函数的零点,是或中的元素,在分类讨论计算可得.【小问1详解】的最小正周期为:对于函数,当时,单调递减,解得所以函数的单调递减区间是;【小问2详解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- lng应急处置措施
- 《全国建设工程土建》课件
- 《各国汽车特点》课件
- 安全标准化培训
- 《光谱分析技术》课件
- 住院患者心脏骤停应急预案
- 头痛治疗与用药指导
- 《天然产物化学》课件
- 用品销售项目二
- 微课管理实践中常见的问题财经管理人力资源管理系副
- 八年级下册 第六单元 23《马说》公开课一等奖创新教学设计
- 理智与情感:爱情的心理文化之旅智慧树知到期末考试答案章节答案2024年昆明理工大学
- 期末模拟考试03-【中职专用】《心理健康与职业生涯》(高教版2023·基础模块)(含答案)
- GB 20052-2024电力变压器能效限定值及能效等级
- 陶行知与乡村教育智慧树知到期末考试答案章节答案2024年丽水学院
- 人民调解卷宗规范化制作说明
- 手术切口感染PDCA案例
- 依托国家中小学智慧教育平台开展有效教学的研究课题申报评审书
- 烟雾病与麻醉
- 学生会团总支学期工作总结
- (2024年)食源性疾病监测培训课件
评论
0/150
提交评论