




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北京市西城区第四十四中学2023-2024学年高一数学第一学期期末综合测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.关于函数,下列说法正确的是()A.最小值为0 B.函数为奇函数C.函数是周期为周期函数 D.函数在区间上单调递减2.已知角的终边经过点,则A. B.C.-2 D.3.某几何体的三视图如图所示,则该几何体的体积为()A. B.C. D.4.若集合,集合,则()A.{5,8} B.{4,5,6,8}C.{3,5,7,8} D.{3,4,5,6,7,8}5.()A. B.C. D.6.设集合,,则集合A. B.C. D.7.已知函数在内是减函数,则的取值范围是A. B.C. D.8.已知集合,,若,则的值为A.4 B.7C.9 D.109.已知幂函数的图象过点(2,),则的值为()A. B.C. D.10.下列各选项中的两个函数的图象关于y轴对称的是()A.与 B.与C.与 D.与11.平行于同一平面的两条直线的位置关系是A.平行 B.相交或异面C.平行或相交 D.平行、相交或异面12.在中,若,则的形状为()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.已知函数,则___________..14.两平行直线与之间的距离______.15.下列命题中所有正确的序号是______________①函数最小值为4;②函数的定义域是,则函数的定义域为;③若,则的取值范围是;④若(,),则16.已知函数,且关于的方程有且仅有一个实数根,那实数的取值范围为________三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.已知函数,不等式的解集为(1)求不等式的解集;(2)当在上单调递增,求m的取值范围18.定义在(-1,1)上的奇函数为减函数,且,求实数a的取值范围.19.已知定义域为R的函数是奇函数.(1)求a的值;(2)求不等式的解集.20.设a>0,且a≠1,解关于x的不等式21.近来,国内多个城市纷纷加码布局“夜经济”,以满足不同层次的多元消费,并拉动就业、带动创业,进而提升区域经济发展活力.某夜市的一位工艺品售卖者,通过对每天销售情况的调查发现:该工艺品在过去的一个月内(以天计),每件的销售价格(单位:元)与时间(单位:天)的函数关系近似满足(为常数,且),日销售量(单位:件)与时间(单位:天)的部分数据如下表所示:已知第天的日销售收入为元(1)求的值;(2)给出以下四个函数模型:①;②;③;④请你根据上表中数据,从中选择你认为最合适的一种函数模型来描述日销售量与时间的变化关系,并求出该函数的解析式;(3)设该工艺品的日销售收入为(单位:元),求的最小值22.已知函数(1)证明:;(2)若存在一个平行四边形的四个顶点都在函数的图象上,则称函数具有性质P,判断函数是否具有性质P,并证明你的结论;(3)设点,函数.设点B是曲线上任意一点,求线段AB长度的最小值
参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、D【解析】根据三角函数的性质,得到的最小值为,可判定A不正确;根据奇偶性的定义和三角函数的奇偶性,可判定C不正确;举例可判定C不正确;根据三角函数的单调性,可判定D正确.【详解】由题意,函数,当时,可得,所以,当时,可得,所以,所以函数的最小值为,所以A不正确;又由,所以函数为偶函数,所以B不正确;因为,,所以,所以不是的周期,所以C不正确;当时,,,当时,,即函数在区间上单调递减,又因为,所以函数在区间上单调递减,所以D正确.故选:D.2、B【解析】按三角函数的定义,有.3、A【解析】由题可得该几何体为正方体的一半,截去了一个三棱锥,即得.【详解】由三视图可知该几何体为正方体的一半,截去了一个三棱锥,如图,则其体积为.故选:A.4、D【解析】根据并集的概念和运算即可得出结果.【详解】由,得.故选:D5、D【解析】根据诱导公式以及特殊角的三角函数值,即可容易求得结果.【详解】因为.故选:D.6、D【解析】并集由两个集合所有元素组成,排除重复的元素,故选.7、B【解析】由题设有为减函数,且,恒成立,所以,解得,选B.8、A【解析】可知,或,所以.故选A考点:交集的应用9、A【解析】令幂函数且过(2,),即有,进而可求的值【详解】令,由图象过(2,)∴,可得故∴故选:A【点睛】本题考查了幂函数,由幂函数的形式及其所过的定点求解析式,进而求出对应函数值,属于简单题10、A【解析】根据题意,逐一分析各选项中两个函数的对称性,再判断作答.【详解】对于A,点是函数图象上任意一点,显然在的图象上,而点与关于y轴对称,则与的图象关于y轴对称,A正确;对于B,点是函数图象上任意一点,显然在的图象上,而点与关于原点对称,则与的图象关于原点对称,B不正确;对于C,点是函数图象上任意一点,显然在的图象上,而点与关于x轴对称,则与的图象关于x轴对称,C不正确;对于D,点是函数图象上任意一点,显然在的图象上,而点与关于直线y=x对称,则与的图象关于直线y=x对称,D不正确.故选:A11、D【解析】根据线面平行的位置关系及线线位置关系的分类及定义,可由已知两直线平行于同一平面,得到两直线的位置关系【详解】解:若,且则与可能平行,也可能相交,也有可能异面故平行于同一个平面的两条直线的位置关系是平行或相交或异面故选【点睛】本题考查的知识点是空间线线关系及线面关系,熟练掌握空间线面平行的位置关系及线线关系的分类及定义是详解本题的关键,属于基础题12、D【解析】利用诱导公式和两角和差的正弦公式、正弦的二倍角公式化简已知条件,再结合角的范围即可求解.【详解】因为,由可得:,即,所以,所以,所以或,因为,,所以或,所以的形状为等腰三角形或直角三角形,故选:D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、17【解析】根据分段函数解析式计算可得;【详解】解:因为,故答案为:14、2【解析】根据平行线间距离公式可直接求解.【详解】直线与平行由平行线间距离公式可得故答案为:2【点睛】本题考查了平行线间距离公式的简单应用,属于基础题.15、③④【解析】利用基本不等式可判断①正误;利用抽象函数的定义域可判断②的正误;解对数不等式可判断③;构造函数,函数在上单调递减,结合,求得可判断④.详解】对于①,当时,,由基本不等式可得,当且仅当时,即当时,等号成立,但,故等号不成立,所以,函数,的最小值不是,①错误;对于②,若函数的定义域为,则有,解得,即函数的定义域为,②错误;对于③,若,所以当时,解得:,不满足;当时,解得:,所以的取值范围是,③正确;对于④,令,函数在上单调递减,由得,则,即,故④正确.故答案为:③④.16、【解析】利用数形结合的方法,将方程根的问题转化为函数图象交点的问题,观察图象即可得到结果.【详解】作出的图象,如下图所示:∵关于的方程有且仅有一个实数根,∴函数的图象与有且只有一个交点,由图可知,则实数的取值范围是.故答案为:.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1);(2)﹒【解析】(1)根据二次不等式的解法求出b和c即可;(2)g(x)为开口向下的二次函数,要在[1,2]上递增,则对称轴为x=2或在x=2的右侧.【小问1详解】∵的解集为,∴1和2为方程的根,∴,则可得;∴,∴,即解集为:;【小问2详解】∵在上单调递增,∴,故,m的取值范围为:﹒18、【解析】结合奇函数性质以及单调性,去掉外层函数,变成一元二次不等式进行求解.【详解】由题即根据奇函数定义可知原不等式为又因为单调递减函数,故,解得或又因为函数定义域为故,解得,所以综上得的范围为.19、(1);(2).【解析】(1)利用奇函数的必要条件,,求出,进而再验证此时为奇函数;(2),要用函数的单调性,将复合不等式转化,所以考虑分离常数,化简为,判断在是增函数,可得不等式,转化为求指数幂不等式,即可求解.【详解】(1)函数是奇函数,,,;(2),令,解得,化,在上增函数,且,所以在是增函数,等价于,,所以不等式的解集为.【点睛】本题考查函数的奇偶性求参数,要注意应用奇偶性的必要条件减少计算量,但要进行验证;考查函数的单调性应用及解不等式,考查计算、推理能力,属于中档题.20、当时,不等式的解集为;当时,不等式的解集为【解析】对进行分类讨论,结合指数函数的单调性求得不等式的解集.【详解】当时,在上递减,所以,即,解得,即不等式的解集为.当时,在上递增,所以,即,解得或,即不等式的解集为.21、(1);(2);(3).【解析】(1)根据第10天的日销售收入,得到,即可求解;(2)由数据知先增后减,选择②,由对称性求得实数的值,再利用进而列出方程组,求得的值,从而求得函数的解析式;(3)根据(2)求得的解析式,然后利用基本不等式和函数的单调性分别求得各段的最小值,比较得到结论.【详解】(1)因为第10天的日销售收入为505元,所以,即,解得.(2)由表格中的数据知,当时间变换时,先增后减,函数模型:①;③;④都是单调函数,所以选择模型②:,由,可得,解得,由,解得,所以日销售量与时间的变化的关系式为.(3)由(2)知,所以,即,当时,由基本不等式,可得,当且仅当时,即时等号成立,当时,为减函数,所以函数的最小值为,综上可得,当时,函数取得最小值【点睛】求解所给函数模型解决实际问题的关注点:1、认清所给函数模型,弄清哪些量为待定系数;2、根据已知利用待定系数法,列出方程,确定函数模型中的待定系数;3、结合函数的基本形式,利用函数模型求解实际问题,22、(1)证明见解析;(2)函数具有性质P,证明见解析;(3)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 南充2025年四川南充市高端人才服务中心南充市干部人事档案中心考调3人笔试历年参考题库附带答案详解
- 商铺续租合同
- 幼儿园教师实习期聘用合同
- 还款协议书范例二零二五年
- 二零二五林地承包合同书范例
- 二零二五版幼儿园厨师聘用合同范例
- 二零二五版学校租赁办学场地合同范例
- 车辆质押借款合同全套二零二五年
- 小学生防溜冰防溺水课件
- 2025上海房屋租赁合同(示范合同)
- 2024年注册会计师考试税法科目试卷与参考答案
- 《大坝安全监测培训》课件
- 报关实务-教学课件 第一章 海关概念
- 防火门监控系统技术规格书
- 生鲜电商物流配送模式分析及优化策略-以京东为例
- 湛江市2025届高三10月调研测试 语文试卷(含答案详解)
- 中国诗词线索题
- GB/T 10433-2024紧固件电弧螺柱焊用螺柱和瓷环
- 《人工智能基础》课件-AI的前世今生:她从哪里来
- 透析器首次使用综合征
- 下肢静脉曲张的静脉内射频消融术
评论
0/150
提交评论