版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届云南省临沧市临翔区元江民族中学高一数学第一学期期末联考试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.若,则()A. B.C.或1 D.或2.函数的一个单调递增区间是()A. B.C. D.3.函数的零点所在区间是()A B.C. D.4.如图所示,在正方体ABCD—A1B1C1D1中,M、N分别是BB1、BC的中点.则图中阴影部分在平面ADD1A1上的正投影为()A. B.C. D.5.下列与的终边相同的角的集合中正确的是()A. B.C. D.6.函数的零点所在的区间是()A.(0,1) B.(1,2)C.(2,3) D.(3,4)7.若正实数,满足,则的最小值为()A. B.C. D.8.从2020年起,北京考生的高考成绩由语文、数学、外语3门统一高考成绩和考生选考的3门普通高中学业水平考试等级性考试科目成绩构成,等级性考试成绩位次由高到低分为A、B、C、D、E,各等级人数所占比例依次为:A等级15%,B等级40%,C等级30%,D等级14%,E等级1%.现采用分层抽样的方法,从参加历史等级性考试的学生中抽取200人作为样本,则该样本中获得B等级的学生人数为()A.30 B.60C.80 D.289.已知是函数的反函数,则的值为()A.0 B.1C.10 D.10010.已知函数,下列说法错误的是()A.函数在上单调递减B.函数是最小正周期为的周期函数C.若,则方程在区间内,最多有4个不同的根D.函数在区间内,共有6个零点11.已知函数则函数的零点个数为.A. B.C. D.12.已知,则的值为()A.3 B.6C.9 D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.写出一个同时具有下列性质的函数___________.①是奇函数;②在上为单调递减函数;③.14.若sinθ=,求的值_______15.已知函数,若函数图象恒在函数图象的下方,则实数的取值范围是__________.16.水葫芦又名凤眼莲,是一种原产于南美洲亚马逊河流域属于雨久花科,凤眼蓝属的一种漂浮性水生植物,繁殖极快,广泛分布于世界各地,被列入世界百大外来入侵种之一.某池塘中野生水葫芦的面积与时间的函数关系图象如图所示.假设其函数关系为指数函数,并给出下列说法:①此指数函数的底数为2;②在第5个月时,野生水葫芦的面积就会超过30m2;③野生水葫芦从4m2蔓延到12m2只需1.5个月;④设野生水葫芦蔓延至2m2、3m2、6m2所需的时间分别为t1、t2、t3,则有t1+t2=t3;⑤野生水葫芦在第1到第3个月之间蔓延的平均速度等于在第2到第4个月之间蔓延的平均速度.其中,正确的是________.(填序号).三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.已知函数是定义在R上的奇函数(1)用定义法证明为增函数;(2)对任意,都有恒成立,求实数k的取值范围18.已知函数的最小正周期为.(1)求函数的单调递增区间;(2)将函数的图象向左平移个单位,再向上平移个单位,得到函数的图象.若在上至少有个零点,求的最小值.19.已知函数的定义域是.(1)求实数a的取值范围;(2)解关于m的不等式.20.某地区今年1月、2月、3月患某种传染病的人数分别为52、54、58;为了预测以后各月的患病人数,根据今年1月、2月、3月的数据,甲选择了模型fx=ax2+bx+c,乙选择了模型y=p⋅qx+r,其中y为患病人数,x为月份数,a,b,(1)如果4月、5月、6月份的患病人数分别为66、82、115,你认为谁选择的模型较好?请说明理由;(2)至少要经过多少个月患该传染病的人数将会超过2000人?试用你认为比较好的模型解决上述问题.(参考数据:210=1024,21.已知集合,(1)当,求;(2)若,求的取值范围.22.已知函数(且)的图像过点.(1)求a的值;(2)求不等式的解集.
参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、A【解析】将已知式同分之后,两边平方,再根据可化简得方程,解出或1,根据,得出.【详解】由,两边平方得,或1,,.故选:A.【点睛】本题考查了同角三角函数间的基本关系,以及二倍角的正弦函数公式,属于中档题,要注意对范围的判断.2、A【解析】利用正弦函数的性质,令即可求函数的递增区间,进而判断各选项是否符合要求.【详解】令,可得,当时,是的一个单调增区间,而其它选项不符合.故选:A3、C【解析】利用零点存在定理可得出结论.【详解】函数在上单调递增,因为,,,,所以,函数的零点所在区间是.故选:C.4、A【解析】确定三角形三点在平面ADD1A1上的正投影,从而连接起来就是答案.【详解】点M在平面ADD1A1上的正投影是的中点,点N在平面ADD1A1上的正投影是的中点,点D在平面ADD1A1上的正投影仍然是D,从而连接其三点,A选项为答案,故选:A5、C【解析】由任意角的定义判断【详解】,故与其终边相同的角的集合为或角度制和弧度制不能混用,只有C符合题意故选:C6、B【解析】先求得函数的单调性,利用函数零点存在性定理,即可得解.【详解】解:因为函数均为上的单调递减函数,所以函数在上单调递减,因为,,所以函数的零点所在的区间是.故选:B7、B【解析】由基本不等式有,令,将已知等式转化为关于的一元二次不等式,解不等式即可得答案.【详解】解:由题意,正实数满足,则,令,可得,即,解得,或(舍去),所以当且仅当时,取得最小值2,故选:B.8、C【解析】根据分层抽样的概念即得【详解】由题可知该样本中获得B等级的学生人数为故选:C9、A【解析】根据给定条件求出的解析式,再代入求函数值作答.【详解】因是函数的反函数,则,,所以的值为0.故选:A10、B【解析】A.由时,判断;B.易知是偶函数,作出其图象判断;C.在同一坐标系中作出的图象判断;D.根据函数是偶函数,利用其图象,判断的零点个数即可.【详解】A.当时,,而,上递减,故正确;B.因为,所以是偶函数,当时,,作出其图象如图所示:由图象知;函数不是周期函数,故错误;C.在同一坐标系中作出的图象,如图所示:由图象知:当,方程在区间内,最多有4个不同的根,故正确;D.因为函数是偶函数,只求的零点个数即可,如图所示:由函数图象知,在区间内共有3个,所以函数在区间内,共有6个零点,故正确;故选:B11、B【解析】令,得,令,由,得或,作出函数的图象,结合函数的图象,即可求解【详解】由题意,令,得,令,由,得或,作出函数的图象,如图所示,结合函数的图象可知,有个解,有个解,故的零点个数为,故选B.【点睛】本题主要考查了函数的零点问题,其中令,由,得到或,作出函数的图象,结合函数的图象求解是解答的关键,着重考查了数形结合思想,以及推理与运算能力,属于基础题12、A【解析】直接由对数与指数的互化公式求解即可【详解】解:由,得,故选:A二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、(答案不唯一,符合条件即可)【解析】根据三个性质结合图象可写出一个符合条件的函数解析式【详解】是奇函数,指数函数与对数函数不具有奇偶性,幂函数具有奇偶性,又在上为单调递减函数,同时,故可选,且为奇数,故答案为:14、6【解析】先通过诱导公式对原式进行化简,然后通分,进而通过同角三角函数的平方关系将原式转化为只含的式子,最后得到答案.【详解】原式=+,因为,所以.所以.故答案为:6.15、【解析】作出和时,两个函数图象,结合图象分析可得结果.【详解】当时,,,两个函数的图象如图:当时,,,两个函数的图象如图:要使函数的图象恒在函数图象的下方,由图可知,,故答案为:.16、①②④【解析】设且,根据图像求出,结合计算进而可判断①②③④;根据第1到第3个月、第2到第4个月的面积即可求出对应的平均速度,进而判断⑤.【详解】因为其关系为指数函数,所以可设且,又图像过点,所以.所以指数函数的底数为2,故①正确;当时,,故②正确;当y=4时,;当y=12时,;所以,故③错误;因为,所以,故④正确;第1到第3个月之间的平均速度为:,第2到第4个月之间的平均速度为:,,故⑤错误.故答案为:①②④三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1)证明见解析(2)【解析】(1)根据函数单调性定义及指数函数的单调性与值域即可证明;(2)由已知条件,利用函数的奇偶性和单调性,可得对恒成立,然后分离参数,利用基本不等式求出最值即可得答案.【小问1详解】证明:设,则,由,可得,即,又,,所以,即,则在上为增函数;【小问2详解】解:因为任意,都有恒成立,且函数是定义在R上的奇函数,所以对恒成立,又由(1)知函数在上为增函数,所以对恒成立,由,有,所以对恒成立,设,由递减,可得,所以,当且仅当时取得等号,所以,即的取值范围是.18、(1);(2).【解析】(1)利用正余弦的倍角公式,结合辅助角公式化简为标准正弦型三角函数,根据周期求得参数,再求其单调区间即可;(2)根据函数图像的平移求得的解析式,根据零点个数,即可求得参数的范围.【详解】(1)函数最小正周期为,则,则,所以,令,解得,则函数的单调递增区间为.(2)由题意:,令,得或.所以在每个周期上恰好有两个零点,若在上至少有个零点,应该大于等于第个零点的横坐标,则.【点睛】本题考查利用正余弦倍角公式和辅助角公式化简三角函数解析式,以及求三角函数的单调区间和零点个数,属综合中档题.19、(1)(2)【解析】(1)由题意,在R上恒成立,由判别式求解即可得答案;(2)由指数函数在R上单调递减,可得,求解不等式即可得答案.【小问1详解】解:∵函数的定义域是,∴在R上恒成立,∴,解得,∴实数a的取值范围为.【小问2详解】解:∵,∴指数函数在R上单调递减,∴,解得或,所以原不等式的解集为.20、(1)应将y=2(2)至少经过11个月患该传染病的人数将会超过2000人【解析】(1)分别将x=1,2,3代入两个解析式,求得a,b,c,p,q,r,求得解析式,并分别检验x=4,5,6时函数值与真实值的误差,分析即可得答案.(2)令2x+50>2000,可求得【小问1详解】由题意,把x=1,2,3代入fx得:解得a=1,b=-1,c=52,所以fx所以f4=42-4+52=64则f4-66=2,f把x=1,2,3代入y=gx=p⋅解得p=1,q=2,r=50,所以gx所以g4=24+50=66则g4-66=0,因为g4,g5,g6【小问2详解】令2x+50>2000由于210
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年土地使用权转让合同解析
- 2024年协议管理强化与招投标技巧提升工作坊版B版
- 2024年国际先进仪器技术交流合作合同一
- 江南大学《电力电子技术》2023-2024学年第一学期期末试卷
- 佳木斯大学《药物合成反应3》2021-2022学年第一学期期末试卷
- 2024年医师进修协议模板版B版
- 范文大全矿山生态环境修复工程承包合同2024年3篇
- 2024年全面安全员聘任合同范本版B版
- 暨南大学《英语语法与写作》2021-2022学年第一学期期末试卷
- 暨南大学《商务英语语言学》2021-2022学年第一学期期末试卷
- 人音版初中音乐 九年级上册 中考一轮复习课件
- 主题班会:班风校风主题班会课课件
- 中建污水支管逆作井安全专项施工方案
- 肝硬化食管胃底静脉曲张破裂出血的诊治
- 初中体育《篮球单元计划及体前变向换手运球》教学设计
- 万物之理-爱因斯坦之梦智慧树知到课后章节答案2023年下中国海洋大学
- 项目备案申请表
- 【基于PLC的交通信号灯控制系统设计7000字(论文)】
- 洛洛学专注:用故事帮助容易走神的孩子
- 2.1.2+岩石圈物质循环+第二课时+课件【知识精研提升】高二地理湘教版(2019)选择性必修1
- 化工园区招商政策
评论
0/150
提交评论