版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届上海市上外附属大境中学数学高一上期末质量跟踪监视模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数的图象的一部分如图1所示,则图2中的函数图象对应的函数解析式为()A. B.C. D.2.函数和都是减函数的区间是A. B.C. D.3.下列函数,在其定义域内既是奇函数又是增函数的是A. B.C. D.4.下列函数是偶函数且在区间(–∞,0)上为减函数的是()A.y=2x B.y=C.y=x D.5.已知集合,集合,则()A.{-1,0,1} B.{1,2}C.{-1,0,1,2} D.{0,1,2}6.(南昌高三文科数学(模拟一)第9题)我国古代数学名著《九章算术》中有如下问题:今有甲乙丙三人持钱,甲语乙丙:各将公等所持钱,半以益我,钱成九十(意思是把你们两个手上的钱各分我一半,我手上就有钱);乙复语甲丙,各将公等所持钱,半以益我,钱成七十;丙复语甲乙:各将公等所持钱,半以益我,钱成五十六,则乙手上有钱.A. B.C. D.7.在人类用智慧架设的无数座从已知通向未知的金桥中,用二分法求方程的近似解是其中璀璨的一座.已知为锐角的内角,满足,则()A. B.C. D.8.设全集,集合,,则等于A. B.{4}C.{2,4} D.{2,4,6}9.函数的零点所在的区间为A. B.C. D.10.下列指数式与对数式的互化不正确的一组是()A.100=1与lg1=0 B.与C.log39=2与32=9 D.log55=1与51=5二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数(,)的部分图象如图所示,则的值为12.已知是定义在R上的奇函数,当时,,则在R上的表达式是________13.已知函数,,其中表示不超过x的最大整数.例如:,,.①______;②若对任意都成立,则实数m的取值范围是______14.函数的零点是___________.15.若是幂函数且在单调递增,则实数_______.16.经过点且在轴和轴上的截距相等的直线的方程为__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图所示,四棱锥的底面是边长为1的菱形,,E是CD中点,PA底面ABCD,(I)证明:平面PBE平面PAB;(II)求二面角A—BE—P和的大小18.(1)计算:;(2)计算:19.如图,三棱台DEFABC中,AB=2DE,G,H分别为AC,BC的中点(1)求证:平面ABED∥平面FGH;(2)若CF⊥BC,AB⊥BC,求证:平面BCD⊥平面EGH.20.已知函数为定义在R上的奇函数.(1)求实数a的值;(2)判断函数的单调性,并证明;21.如图,已知四棱柱的底面是菱形,侧棱底面,是的中点,,.(1)证明:平面;(2)求直线与平面所成的角的正弦值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】利用三角函数的图象变换规律可求得结果.【详解】观察图象可知,右方图象是由左方图象向左移动一个长度单位后得到的图象,再把的图象上所有点的横坐标缩小为原来的(纵坐标不变)得到的,所以右图的图象所对应的解析式为.故选:B2、A【解析】y=sinx是减函数的区间是,y=cosx是减函数的区间是[2k,2k+],,∴同时成立的区间为故选A.3、A【解析】由幂函数,指数函数与对数函数的性质可得【详解】解:根据题意,依次分析选项:对于A,,其定义域为R,在R上既是奇函数又是增函数,符合题意;对于B,,是对数函数,不是奇函数,不符合题意;对于C,,为指数函数,不为奇函数;对于D,,为反比例函数,其定义域为,在其定义域上不是增函数,不符合题意;故选A【点睛】本题考查函数的奇偶性与单调性,是基础题,掌握幂函数,指数函数与对数函数的性质是解题关键4、C【解析】根据解析式判断各个选项中函数的奇偶性和单调性可得答案.【详解】y=2x不是偶函数;y=1y=x是偶函数,且函数在-y=-x2是二次函数,是偶函数,且在故选:C.5、B【解析】由交集定义求得结果.【详解】由交集定义知故选:B6、B【解析】详解】设甲乙丙各有钱,则有解得,选B.7、C【解析】设设,则在单调递增,再利用零点存在定理即可判断函数的零点所在的区间,也即是方程的根所在的区间.【详解】因为为锐角的内角,满足,设,则在单调递增,,在取,得,,因为,所以的零点位于区间,即满足的角,故选:C【点睛】关键点点睛:本题解题的关键点是令,根据零点存在定理判断函数的零点所在的区间.8、C【解析】由并集与补集的概念运算【详解】故选:C9、B【解析】函数的零点所在区间需满足的条件是函数在区间端点的函数值符号相反,函数是连续函数【详解】解:函数是连续增函数,,,即,函数的零点所在区间是,故选:【点睛】本题考查函数的零点的判定定理,连续函数在某个区间存在零点的条件是函数在区间端点处的函数值异号,属于基础题10、B【解析】根据指数式与对数式的互化逐一判断即可.【详解】A.1对数等于0,即,可得到:100=1与lg1=0;故正确;B.对应的对数式应为,故不正确;C.;故正确,D.很明显log55=1与51=5是正确的;故选:B.【点睛】本题考查指数式与对数式的互化,考查基本分析判断能力,属基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】先计算周期,则,函数,又图象过点,则,∴由于,则.考点:依据图象求函数的解析式;12、【解析】根据奇函数定义求出时的解析式,再写出上的解析式即可【详解】时,,,所以故答案为:【点睛】本题考查函数的奇偶性,掌握奇函数的定义是解题关键13、①.②.【解析】①代入,由函数的定义计算可得答案;②分别计算时,时,时,时,时,时,时,的值,建立不等式,求解即可【详解】解:①∵,∴②当时,;当时,;当时,;当时,;当时,;当时,;当时,又对任意都成立,即恒成立,∴,∴,∴实数m的取值范围是故答案为:;.【点睛】关键点睛:本题考查函数的新定义,关键在于理解函数的定义,分段求值,建立不等式求解.14、和【解析】令y=0,直接解出零点.【详解】令y=0,即,解得:和故答案为:和【点睛】已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解15、2【解析】由幂函数可得,解得或2,检验函数单调性求解即可.【详解】为幂函数,所以,解得或2.当时,,在不单调递增,舍去;当时,,在单调递增成立.故答案为.【点睛】本题主要考查了幂函数的定义及单调性,属于基础题.16、或【解析】根据题意将问题分直线过原点和不过原点两种情况求解,然后结合待定系数法可得到所求的直线方程【详解】(1)当直线过原点时,可设直线方程为,∵点在直线上,∴,∴直线方程为,即(2)当直线不过原点时,设直线方程,∵点在直线上,∴,∴,∴直线方程为,即综上可得所求直线方程为或故答案为或【点睛】在求直线方程时,应先选择适当形式的直线方程,并注意各种形式的方程所适用的条件,由于截距式不能表示与坐标轴垂直或经过原点的直线,故在解题时若采用截距式,应注意分类讨论,判断截距是否为零,分为直线过原点和不过原点两种情况求解.本题考查直线方程的求法和分类讨论思想方法的运用三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(I)同解析(II)二面角的大小为【解析】解:解法一(I)如图所示,连结由是菱形且知,是等边三角形.因为E是CD的中点,所以又所以又因为PA平面ABCD,平面ABCD,所以而因此平面PAB.又平面PBE,所以平面PBE平面PAB.(II)由(I)知,平面PAB,平面PAB,所以又所以是二面角的平面角在中,故二面角的大小为解法二:如图所示,以A为原点,建立空间直角坐标系则相关各点的坐标分别是:(I)因为平面PAB的一个法向量是所以和共线.从而平面PAB.又因为平面PBE,所以平面PBE平面PAB.(II)易知设是平面PBE的一个法向量,则由得所以故可取而平面ABE的一个法向量是于是,故二面角的大小为18、(1);(2).【解析】(1)由根式化为分数指数幂,再由幂的运算法则计算(2)利用对数的换底公式和运算法则计算【详解】(1)原式=8+0.1+1=9.1(2)原式==1+=1+2=319、(1)见解析(2)见解析【解析】解析:(1)在三棱台DEFABC中,BC=2EF,H为BC的中点,BH∥EF,BH=EF,四边形BHFE为平行四边形,有BE∥HF.BE∥平面FGH在△ABC中,G为AC的中点,H为BC的中点,GH∥AB.AB∥平面FGH又AB∩BE=B,所以平面ABED∥平面FGH.(2)连接HE,EGG,H分别为AC,BC的中点,GH∥AB.AB⊥BC,GH⊥BC.又H为BC的中点,EF∥HC,EF=HC,四边形EFCH是平行四边形,有CF∥HE.CF⊥BC,HE⊥BC.HE,GH⊂平面EGH,HE∩GH=H,BC⊥平面EGH.BC⊂平面BCD,平面BCD⊥平面EGH.20、(1);(2)是R上的增函数,证明详见解析.【解析】(1)由奇函数定义可解得;(2)是上的增函数,可用定义证明.【详解】(1)因为为定义在上的奇函数,所以对任意,,即,所以,因为,所以,即.(2)由(1)知,则是上的增函数,下用定义证明.任取,且,,当时,,又,所以,即,故是上的增函数.21、(1)详见解析;(2).【解析】(1)连接交于点,连接,,可证明
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度安徽省租赁房屋租赁合同解除协议2篇
- 二零二五版多功能会议场地租赁服务合同模板3篇
- 二零二五版废渣运输合同环保评估与整改方案3篇
- 二零二五版公积金贷款个人公积金提取借款合同3篇
- 二零二五版工业自动化生产线改造项目承包合同范本3篇
- 二零二五版房屋屋顶光伏发电系统检测维修合同范本3篇
- 二零二五年度智慧能源管理系统集成合同2篇
- 二零二五年机床设备采购与客户项目整体解决方案合同3篇
- 二零二五年抖音广告创意策划与投放服务合同3篇
- 二零二五年新型环保建材生产与建筑垃圾回收处理合同3篇
- 常用静脉药物溶媒的选择
- 2023-2024学年度人教版一年级语文上册寒假作业
- 当代西方文学理论知到智慧树章节测试课后答案2024年秋武汉科技大学
- 2024年预制混凝土制品购销协议3篇
- 2024-2030年中国高端私人会所市场竞争格局及投资经营管理分析报告
- GA/T 1003-2024银行自助服务亭技术规范
- 《消防设备操作使用》培训
- 新交际英语(2024)一年级上册Unit 1~6全册教案
- 2024年度跨境电商平台运营与孵化合同
- 2024年电动汽车充电消费者研究报告-2024-11-新能源
- 湖北省黄冈高级中学2025届物理高一第一学期期末考试试题含解析
评论
0/150
提交评论