版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届四川省宜宾市叙州区二中高一数学第一学期期末联考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12小题,共60分)1.已知是定义在R上的单调函数,满足,且,若,则a与b的关系是A. B.C. D.2.我国著名数学家华罗庚先生曾说:“数缺形时少直观,形缺数时难入微,数形结合百般好,隔裂分家万事休.”在数学的学习和研究中,常用函数的图象来研究函数的性质,也可用函数的解析式来琢磨函数的图象的特征,如通过函数的解析式可判断其在区间的图象大致为()A. B.C. D.3.若集合,则下列选项正确的是()A. B.C. D.4.命题P:“,”的否定为A., B.,C., D.,5.命题“,使.”的否定形式是()A.“,使” B.“,使”C.“,使” D.“,使”6.已知一个直三棱柱的高为2,如图,其底面ABC水平放置的直观图(斜二测画法)为,其中,则此三棱柱的表面积为()A. B.C. D.7.二次函数中,,则函数的零点个数是A.个 B.个C.个 D.无法确定8.某同学用“五点法”画函数fxωx+φ0ππ3π2xπ5πA05-50根据表格中的数据,函数fxA.fx=5C.fx=59.“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件10.已知集合,,若,则A. B.C. D.11.若将函数的图象向左平移个单位长度,则平移后图象的对称轴为()A. B.C. D.12.在正六棱柱任意两个顶点的连线中与棱AB平行的条数为()A.2 B.3C.4 D.5二、填空题(本大题共4小题,共20分)13.已知集合.(1)集合A的真子集的个数为___________;(2)若,则t的所有可能的取值构成的集合是___________.14.已知且,且,如果无论在给定的范围内取任何值时,函数与函数总经过同一个定点,则实数__________15.定义在上的函数满足则________.16.如果直线与直线互相垂直,则实数__________三、解答题(本大题共6小题,共70分)17.为了研究某种微生物的生长规律,研究小组在实验室对该种微生物进行培育实验.前一天观测得到该微生物的群落单位数量分别为8,14,26.根据实验数据,用y表示第天的群落单位数量,某研究员提出了两种函数模型:①;②,其中且.(1)根据实验数据,分别求出这两种函数模型的解析式;(2)若第4天和第5天观测得到的群落单位数量分别为50和98,请从两个函数模型中选出更合适的一个,并预计从第几天开始该微生物的群落单位数量超过500.18.已知函数(1)求函数的单调递减区间;(2)若关于的方程有解,求的取值范围19.已知函数(1)求函数的对称轴和单调减区间;(2)当时,函数的最大值与最小值的和为2,求a20.“绿水青山就是金山银山”.某企业决定开发生产一款大型净水设备,生产这款设备的年固定成本为600万元,每生产台需要另投入成本万元.当年产量x不足100台时,;当年产量x不少于100台时,.若每台设备的售价为100万元时,经过市场分析,该企业生产的净水设备能全部售完(1)求年利润y(万元)关于年产量x(台)的函数关系式;(2)当年产量x为多少台时,该企业在这一款净水设备的生产中获利最大,最大利润是多少万元?21.我们知道,声音由物体的振动产生,以波的形式在一定的介质(如固体、液体、气体)中进行传播.在物理学中,声波在单位时间内作用在与其传递方向垂直的单位面积上的能量称为声强I().但在实际生活中,常用声音的声强级D(分贝)来度量.为了描述声强级D()与声强I()之间的函数关系,经过多次测定,得到如下数据:组别1234567声强I()①声强级D()1013.0114.7716.022040②现有以下三种函数模型供选择:(1)试根据第1-5组的数据选出你认为符合实际的函数模型,简单叙述理由,并根据第1组和第5组数据求出相应的解析式;(2)根据(1)中所求解析式,结合表中已知数据,求出表格中①、②数据的值;(3)已知烟花的噪声分贝一般在,其声强为;鞭炮的噪声分贝一般在,其声强为;飞机起飞时发动机的噪声分贝一般在,其声强为,试判断与的大小关系,并说明理由22.已知(1)求的值(2)求
参考答案一、选择题(本大题共12小题,共60分)1、A【解析】由题意,设,则,又由,求得,得t值,确定函数的解析式,据此分析可得,即,又由,利用换底公式,求得,结合对数的运算性质分析可得答案【详解】根据题意,是定义在R上的单调函数,满足,则为常数,设,则,又由,即,则有,解可得,则,若,即,则,若,必有,则有,又由,则,解可得,即,所以,故选A【点睛】本题主要考查了函数的单调性的应用,以及对数的运算性质的应用,其中解答中根据题意,设,求得实数的值,确定出函数的解析式,再利用对数的运算性质求解是解答的关键,着重考查了分析问题和解答问题的能力,以及换元思想的应用,属于中档试题2、A【解析】根据函数的定义域,函数的奇偶性,函数值的符号及函数的零点即可判断出选项.【详解】当时,令,得或,且时,;时,,故排除选项B.因为为偶函数,为奇函数,所以为奇函数,故排除选项C;因为时,函数无意义,故排除选项D;故选:A3、C【解析】利用元素与集合,集合与集合的关系判断.【详解】因为集合是奇数集,所以,,,A,故选:C4、B【解析】“全称命题”的否定是“特称命题”根据全称命题的否定写出即可【详解】解:命题P:“,”的否定是:,故选B【点睛】本题考察了“全称命题”的否定是“特称命题”,属于基础题.5、D【解析】根据特称命题的否定是全称命题,即可得出命题的否定形式【详解】因为特称命题的否定是全称命题,所以命题“,使”的否定形式为:,使故选:D6、C【解析】根据斜二测画法的“三变”“三不变”可得底面平面图,然后可解.【详解】由斜二测画法的“三变”“三不变”可得底面平面图如图所示,其中,所以,所以此三棱柱的表面积为.故选:C7、C【解析】计算得出的符号,由此可得出结论.【详解】由已知条件可得,因此,函数的零点个数为.故选:C.8、A【解析】根据函数最值,可求得A值,根据周期公式,可求得ω值,代入特殊点,可求得φ值,即可得答案.【详解】由题意得最大值为5,最小值为-5,所以A=5,T2=5π6-又2×π3+φ=所以fx的解析式可以是故选:A9、A【解析】根据终边相同的角的三角函数值相等,结合充分不必要条件的定义,即可得到答案;【详解】,当,“”是“”的充分不必要条件,故选:A10、A【解析】利用两个集合的交集所包含的元素,求得的值,进而求得.【详解】由于,故,所以,故,故选A.【点睛】本小题主要考查两个集合交集元素的特征,考查两个集合的并集的概念,属于基础题.11、C【解析】由题意得,将函数的图象向左平移个单位长度,得到,由,得,即平移后的函数的对称轴方程为,故选C12、D【解析】作出几何体的直观图观察即可.【详解】解:连接CF,C1F1,与棱AB平行的有,共有5条,故选:D.二、填空题(本大题共4小题,共20分)13、①.15②.【解析】(1)根据集合真子集的计算公式即可求解;(2)根据集合的包含关系即可求解.【详解】解:(1)集合A的真子集的个数为个,(2)因为,又,所以t可能的取值构成的集合为,故答案为:15;.14、3【解析】因为函数与函数总经过同一个定点,函数的图象经过定点,所以函数总也经过,所以,,,故答案为.15、【解析】表示周期为3的函数,故,故可以得出结果【详解】解:表示周期为3的函数,【点睛】本题考查了函数的周期性,解题的关键是要能根据函数周期性的定义得出函数的周期,从而进行解题16、或2【解析】分别对两条直线的斜率存在和不存在进行讨论,利用两条直线互相垂直的充要条件,得到关于的方程可求得结果【详解】设直线为直线;直线为直线,①当直线率不存在时,即,时,直线的斜率为0,故直线与直线互相垂直,所以时两直线互相垂直②当直线和斜率都存在时,,要使两直线互相垂直,即让两直线的斜率相乘为,故③当直线斜率不存在时,显然两直线不垂直,综上所述:或,故答案为或.【点睛】本题主要考查两直线垂直的充要条件,若利用斜率之积等于,应注意斜率不存在的情况,属于中档题.三、解答题(本大题共6小题,共70分)17、(1)函数模型①,函数模型②(2)函数模型②更合适,从第8天开始该微生物的群落单位数量超过500【解析】(1)可通过已知条件给到的数据,分别带入函数模型①和函数模型②,列出方程组求解出参数即可完成求解;(2)将第4天和第5天得到的数据与第(1)问计算出的函数模型①和函数模型②的表达式计算出的第4天和第5天的模拟数据对比,即可做出判断并计算.【小问1详解】对于函数模型①:把及相应y值代入得解得,所以.对于函数模型②:把及相应y值代入得解得,所以.【小问2详解】对于模型①,当时,,当时,,故模型①不符合观测数据;对于模型②,当时,,当时,,符合观测数据,所以函数模型②更合适要使,则,即从第8天开始该微生物的群落单位数量超过500.18、(1);(2).【解析】(1)由二倍角正余弦公式、辅助角公式可得,根据正弦函数的性质,应用整体法求单调减区间.(2)由正弦型函数的性质求值域,结合题设方程有解,即可确定参数范围.【小问1详解】,令,解得,所以函数的单调递减区间是.【小问2详解】∵,∴,又有解,所以m的取值范围19、(1)对称轴为,单调减区间(2)【解析】(1)先利用三角恒等变换化简解析式,再由正弦函数的性质求解即可;(2)由正弦函数的性质得出函数的最大值与最小值,进而得出.【小问1详解】由可得,函数的对称轴为由可得,即单调减区间为【小问2详解】20、(1)(2)年产量为102台时,该企业在这一款净水设备的生产中获利最大,最大利润是2798万元【解析】(1)根据利润=销售额−成本,通过分类讨论,即可求出年利润关于年产量的函数关系式;(2)通过求分段函数的最大值即可得出答案.【小问1详解】由条件可得年利润y(万元)关于年产量x(台)的函数关系式:化简得:【小问2详解】当时,,,当时,取最大值(万元)当时,,,(万元)当时,即台时,取最大值2798万元综上:年产量为102台时,该企业在这一款净水设备的生产中获利最大,最大利润是2798万元21、(1),理由见解析(2),(3),理由见解析【解析】(1)根据表格中的数据进行分析,可排除一次函数和二次函数,再根据待定系数法,即可得到结果;(2)由(1),令,可求出的值,即可知道①处的值;由已知可得时,可得,进而可求出当时的值,进而求出②处的值;(3)设烟花噪声、鞭炮噪声和飞机起飞时发动机噪声的声强级分别为,由已知可得,代入关系式,即可判断与的大小关系.【小问1详解】解:选择.由表格中的前四组数据可知,当自变量增加量为时,函数值的增加量不是同一个常数,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 淮阴师范学院《中国现当代文学史(1)》2021-2022学年第一学期期末试卷
- 淮阴师范学院《管理学原理》2021-2022学年第一学期期末试卷
- 淮阴师范学院《基本体操(3)》2021-2022学年第一学期期末试卷
- DB6111∕T+213-2024+设施番茄低温冷害分级与预防技术规范
- 文书模板-安防技术方案
- 从零开始的财富之路金融知识与投资技巧考核试卷
- 环保皮革制品的发展趋势考核试卷
- 建筑装饰的室内施工安全控制措施详解分析考核试卷
- 信息系统旅游服务与智慧旅游考核试卷
- 木材采运的安全生产与环境保护考核试卷
- 期中测评试卷(1-4单元)(试题)-2024-2025学年人教版三年级数学上册
- 2023年国家公务员录用考试《行测》行政执法卷-解析
- 建筑物修复行业市场深度分析报告
- 西欧庄园教学设计 统编版九年级历史上册
- GB/T 15822.1-2024无损检测磁粉检测第1部分:总则
- 2021年四川乐山中考满分作文《把诗情写进青春里》
- 2024新版七年级英语单词表
- 2024年移动网格经理(认证考试)备考试题库大全-上单选、多选题汇
- 江苏省徐州市2023-2024学年八年级上学期期中英语试题
- 牙体牙髓病学-关于牙齿的故事智慧树知到答案2024年南昌大学
- 新质生产力解读课件
评论
0/150
提交评论