2024届陕西省西安市蓝田县高一数学第一学期期末质量检测模拟试题含解析_第1页
2024届陕西省西安市蓝田县高一数学第一学期期末质量检测模拟试题含解析_第2页
2024届陕西省西安市蓝田县高一数学第一学期期末质量检测模拟试题含解析_第3页
2024届陕西省西安市蓝田县高一数学第一学期期末质量检测模拟试题含解析_第4页
2024届陕西省西安市蓝田县高一数学第一学期期末质量检测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届陕西省西安市蓝田县高一数学第一学期期末质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12小题,共60分)1.下列运算中,正确的是()A. B.C. D.2.函数的值域是A. B.C. D.3.定义在上的函数满足,且当时,,若关于的方程在上至少有两个实数解,则实数的取值范围为()A. B.C. D.4.在平面直角坐标系中,角的顶点与原点重合,角的始边与轴非负半轴重合,角的终边经过点,则()A B.C. D.5.()A.0 B.1C.6 D.6.已知函数,若(其中.),则的最小值为()A. B.C.2 D.47.如图程序框图的算法源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的值分别为30,12,0,经过运算输出,则的值为()A.6 B.C.9 D.8.已知条件,条件,则p是q的()A充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件9.已知幂函数的图象过点,则A. B.C.1 D.210.在空间给出下面四个命题(其中、为不同的两条直线),、为不同的两个平面)①②③④其中正确的命题个数有A.1个 B.2个C.3个 D.4个11.下表是某次测量中两个变量的一组数据,若将表示为关于的函数,则最可能的函数模型是234567890.631.011.261.461.631.771.891.99A.一次函数模型 B.二次函数模型C.指数函数模型 D.对数函数模型12.函数在单调递减,且为奇函数.若,则满足的的取值范围是().A. B.C. D.二、填空题(本大题共4小题,共20分)13.已知函数,关于方程有四个不同的实数解,则的取值范围为__________14.已知是球上的点,,,,则球的表面积等于________________15.已知函数f(x)=log0.5(x2-ax+3a)在[2,+∞)单调递减,则a的取值范围为________16.已知函数()的部分图象如图所示,则的解析式是___________.三、解答题(本大题共6小题,共70分)17.已知,,且函数有奇偶性,求a,b的值18.某实验室一天的温度(单位:)随时间(单位:)的变化近似满足函数关系:,.(Ⅰ)求实验室这一天的最大温差;(Ⅱ)若要求实验室温度不高于,则在哪个时间段实验室需要降温?19.已知函数.(1)求函数的最小正周期及单调递增区间;(2)求函数在区间上的值域.20.已知圆,直线.(1)若直线与圆交于不同的两点,当时,求的值.(2)若是直线上的动点,过作圆的两条切线,切点为,探究:直线是否过定点;(3)若为圆的两条相互垂直的弦,垂足为,求四边形的面积的最大值.21.已知定义在上的函数是奇函数(1)求实数;(2)若不等式恒成立,求实数的取值范围22.已知函数,且(1)求f(x)的解析式;(2)判断f(x)在区间(0,1)上的单调性,并用定义法证明

参考答案一、选择题(本大题共12小题,共60分)1、C【解析】根据对数和指数的运算法则逐项计算即可.【详解】,故A错误;,故B错误;,故C正确;,故D错误.故选:C.2、A【解析】由,知,解得令,则.,即为和两函数图象有交点,作出函数图象,如图所示:由图可知,当直线和半圆相切时最小,当直线过点A(4,0)时,最大.当直线和半圆相切时,,解得,由图可知.当直线过点A(4,0)时,,解得.所以,即.故选A.3、C【解析】把问题转化为函数在上的图象与直线至少有两个公共点,再数形结合,求解作答.【详解】函数满足,当时,,则当时,,当时,,关于的方程在上至少有两个实数解,等价于函数在上的图象与直线至少有两个公共点,函数的图象是恒过定点的动直线,函数在上的图象与直线,如图,观察图象得:当直线过点时,,将此时的直线绕点A逆时针旋转到直线的位置,直线(除时外)与函数在上的图象最多一个公共点,此时或或a不存在,将时的直线(含)绕A顺时针旋转到直线(不含直线)的位置,旋转过程中的直线与函数在上的图象至少有两个公共点,此时,所以实数的取值范围为.故选:C【点睛】方法点睛:图象法判断函数零点个数,作出函数f(x)的图象,观察与x轴公共点个数或者将函数变形为易于作图的两个函数,作出这两个函数的图象,观察它们的公共点个数.4、A【解析】根据任意角的三角函数定义即可求解.【详解】解:由题意知:角的终边经过点,故.故选:A.5、B【解析】首先根据对数的运算法则,对式子进行相应的变形、整理,求得结果即可.【详解】,故选B.【点睛】该题考查的是有关对数的运算求值问题,涉及到的知识点有对数的运算法则,熟练掌握对数的运算法则是解题的关键.6、B【解析】根据二次函数的性质及对数的运算可得,利用均值不等式求最值即可.详解】,由,,即,,当且仅当,即时等号成立,故选:B7、D【解析】利用程序框图得出,再利用对数的运算性质即可求解.【详解】当时,,,当时,,,当时,,,当时,,所以.故选:D【点睛】本题考查了循环结构嵌套条件结构以及对数的运算,解题的关键是根据程序框图求出输出的结果,属于基础题.8、B【解析】利用充分条件和必要条件的定义进行判断【详解】由,得,即,由,得,即推不出,但能推出,∴p是q的必要不充分条件.故选:B9、B【解析】先利用待定系数法求出幂函数的表达式,然后将代入求得的值.【详解】设,将点代入得,解得,则,所以,答案B.【点睛】主要考查幂函数解析式的求解以及函数值求解,属于基础题.10、C【解析】:①若α,则,根据线面垂直的性质可知正确;②若,则;不正确,也可能是m在α内;错误;③若,则;据线面垂直的判定定理可知正确;④若,根据线面平行判定的定理可知正确得到①③④正确,故选C11、D【解析】对于,由于均匀增加,而值不是均匀递增,不是一次函数模型;对于,由于该函数是单调递增,不是二次函数模型;对于,过不是指数函数模型,故选D.12、D【解析】由已知中函数的单调性及奇偶性,可将不等式化为,解得答案【详解】解:由函数为奇函数,得,不等式即为,又单调递减,所以得,即,故选:D.二、填空题(本大题共4小题,共20分)13、【解析】作出的图象如下:结合图像可知,,故令得:或,令得:,且等号取不到,故,故填.点睛:一般讨论函数零点个数问题,都要转化为方程根的个数问题或两个函数图像交点的个数问题,本题由于涉及函数为初等函数,可以考虑函数图像来解决,转化为过定点的直线与抛物线变形图形的交点问题,对函数图像处理能力要求较高.14、【解析】由已知S,A,B,C是球O表面上的点,所以,又,,所以四面体的外接球半径等于以长宽高分别以SA,AB,BC三边长为长方体的外接球的半径,因为,,所以,所以球的表面积点睛:本题考查了球内接多面体,球的表面积公式,属于中档题.其中根据已知条件求球的直径(半径)是解答本题的关键15、(-4,4]【解析】根据复合函数的单调性,结合真数大于零,列出不等式求解即可.【详解】令g(x)=x2-ax+3a,因为f(x)=log0.5(x2-ax+3a)在[2,+∞)单调递减,所以函数g(x)在区间[2,+∞)内单调递增,且恒大于0,所以a≤2且g(2)>0,所以a≤4且4+a>0,所以-4<a≤4故答案为:.【点睛】本题考查由对数型复合函数的单调性求参数范围,注意定义域即可,属基础题.16、【解析】由图可知,,得,从而,所以,然后将代入,得,又,得,因此,,注意最后确定的值时,一定要代入,而不是,否则会产生增根.考点:三角函数的图象与性质.三、解答题(本大题共6小题,共70分)17、为奇函数,,【解析】由函数奇偶性的定义列方程求解即可【详解】若为奇函数,则,所以恒成立,即,所以恒成立,所以,解得,所以当为奇函数时,,若为偶函数,则,所以恒成立,得,得,不合题意,所以不可能是偶函数,综上,为奇函数,,18、(Ⅰ);(Ⅱ)从中午点到晚上点.【解析】(Ⅰ)利用辅助角公式化简函数的解析式为,由此可得出实验室这一天的最大温差;(Ⅱ)由,得出,令,得到,解此不等式即可得出结论.【详解】(Ⅰ),.因此,实验室这一天的最大温差为;(Ⅱ)当时,,令,得,所以,解得,因此,实验室从中午点到晚上点需要降温.【点睛】本题考查三角函数模型在生活中的应用,涉及正弦不等式的求解,考查运算求解能力,属于中等题.19、(1)最小正周期为,单调递增区间为;(2).【解析】(1)利用三角恒等变换化简得出,利用正弦型函数的周期公式可求得函数的最小正周期,解不等式可得出函数的单调递增区间;(2)由可求得的取值范围,利用正弦型函数的基本性质可求得函数的值域.【小问1详解】解:,所以,函数的最小正周期为,由得,故函数的单调递增区间为.【小问2详解】解:当时,,,所以,,即函数在区间上的值域为.20、(1);(2)直线过定点;(3)【解析】(1)利用点到直线的距离公式,结合点到的距离,可求的值;(2)由题意可知:、、、四点共圆且在以为直径的圆上,、在圆上可得直线,的方程,即可求得直线是否过定点;(3)设圆心到直线、的距离分别为,.则,表示出四边形的面积,利用基本不等式,可求四边形的面积最大值【详解】解:(1),点到的距离,(2)由题意可知:、、、四点共圆且在以为直径的圆上,设,其方程为:,即,又、在圆上,即由,得,直线过定点)(3)设圆心到直线、的距离分别为,则,当且仅当即时,取“”四边形的面积的最大值为21、(1)1(2)【解析】(1)根据奇函数的性质,,求参数后,并验证;(2)结合函数单调性和奇函数的性质,不等式变形得恒成立,再根据判别式求实数的取值范围【小问1详解】∵是定义域为的奇函数,∴,∴,则,满足,所以成立.【小问2详解】中,函数单调递减,单调递增,故在上单调递增原不等式化为,∴即恒成立,∴,解得22、(1)(2)f(x)在(0,1)上单调递减,证明见解析.【解析】(1)根据即可求出a=b=1,从而得出;(2)容易判断f(x)在区间(0,1)上单调递减,根据减函数的定义证明:设x1,x2∈(0,1),并且x1<x2,然

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论