2024届安徽省江南十校数学高一上期末调研试题含解析_第1页
2024届安徽省江南十校数学高一上期末调研试题含解析_第2页
2024届安徽省江南十校数学高一上期末调研试题含解析_第3页
2024届安徽省江南十校数学高一上期末调研试题含解析_第4页
2024届安徽省江南十校数学高一上期末调研试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届安徽省江南十校数学高一上期末调研试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.已知函数为定义在上的偶函数,在上单调递减,并且,则实数的取值范围是()A. B.C. D.2.如图所示,一个水平放置的平面图形的直观图是一个底角为45°,腰和上底长均为1的等腰梯形,则该平面图形的面积等于()A. B.C. D.3.已知函数,则下列结论不正确的是()A. B.是的一个周期C.的图象关于点对称 D.的定义域是4.下列函数中,既是偶函数又在单调递增的函数是()A. B.C. D.5.已知不等式的解集为,则不等式的解集是()A. B.C.或 D.或6.若集合,,则()A. B.C. D.7.若函数在上单调递增,则实数a的取值范围是()A. B.C. D.8.若函数的定义域是()A. B.C. D.9.如图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是()A. B.C. D.10.设,,则()A. B.C. D.11.设全集U=R,集合A={x|0<x<4},集合B={x|3≤x<5},则A∩(∁UB)=()A. B.C. D.12.已知角是的内角,则“”是“”的()A.充要条件 B.充分不必要条件C.必要不充分条件 D.既不充分又不必要条件二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.已知函数在区间上是增函数,则下列结论正确是__________(将所有符合题意的序号填在横线上)①函数在区间上是增函数;②满足条件的正整数的最大值为3;③.14.已知点P(-,1),点Q在y轴上,直线PQ的倾斜角为120°,则点Q的坐标为_____15.已知函数在一个周期内的图象如图所示,图中,,则___________.16.函数最小值为______三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.已知函数的定义域是,设(1)求解析式及定义域;(2)若,求函数的最大值和最小值18.已知函数(1)若为偶函数,求;(2)若命题“,”为假命题,求实数的取值范围19.已知直线l过点和直线:平行,圆O的方程为,直线l与圆O交于B,C两点.(1)求直线l的方程;(2)求直线l被圆O所截得的弦长.20.如图所示,在四棱锥中,底面是正方形,侧棱底面,,是的中点,过点作交于点.(1)证明:平面;(2)证明:平面;(3)求三棱锥的体积.21.(1)计算:.(2)化简:.22.已知的数(1)有解时,求实数的取值范围;(2)当时,总有,求定的取值范围

参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、D【解析】利用函数的奇偶性得到,再解不等式组即得解.【详解】解:由题得.因为在上单调递减,并且,所以,所以或.故选:D2、D【解析】根据斜二测画法的规则,得出该平面图象的特征,结合面积公式,即可求解.【详解】由题意,根据斜二测画法规则,可得该平面图形是上底长为,下底长为,高为的直角梯形,所以计算得面积为.故选:D.3、C【解析】画出函数的图象,观察图象可解答.【详解】画出函数的图象,易得的周期为,且是偶函数,定义域是,故A,B,D正确;点不是函数的对称中心,C错误.故选:C4、B【解析】由奇偶性排除,再由增减性可选出正确答案.【详解】项为奇函数,项为非奇非偶函数函数,为偶函数,项中,在单减,项中,在单调递增.故选:B5、A【解析】由不等式的解集为,可得的根为,由韦达定理可得的值,代入不等式解出其解集即可.【详解】的解集为,则的根为,即,,解得,则不等式可化为,即为,解得或,故选:A.6、A【解析】解一元二次不等式化简集合B,再利用交集的定义直接计算作答.【详解】解不等式,即,解得,则,而,所以.故选:A7、A【解析】将写成分段函数的形式,根据单调性先分析每一段函数需要满足的条件,同时注意分段点处函数值关系,由此求解出的取值范围.【详解】因为,所以,当在上单调递增时,,所以,当在上单调递增时,,所以,且,所以,故选:A.【点睛】思路点睛:根据分段函数单调性求解参数范围的步骤:(1)先分析每一段函数的单调性并确定出参数的初步范围;(2)根据单调性确定出分段点处函数值的大小关系;(3)结合(1)(2)求解出参数的最终范围.8、C【解析】根据偶次根号下非负,分母不等于零求解即可.【详解】解:要使函数有意义,则需满足不等式,解得:且,故选:C9、D【解析】根据三视图还原该几何体,然后可算出答案.【详解】由三视图可知该几何体是半径为1的球和底面半径为1,高为3的圆柱的组合体,故其表面积为球的表面积与圆柱的表面积之和,即故选:D10、A【解析】由对数函数的图象和性质知,,则.又因为,根据已知可算出其取值范围,进而得到答案.【详解】解:因为,,所以,又+,所以,所以.故选:A.11、D【解析】先求∁UB,然后求A∩(∁UB)【详解】∵(∁UB)={x|x<3或x≥5},∴A∩(∁UB)={x|0<x<3}故选D【点睛】本题主要考查集合的基本运算,比较基础12、C【解析】在中,由求出角A,再利用充分条件、必要条件的定义直接判断作答.【详解】因角是的内角,则,当时,或,即不一定能推出,若,则,所以“”是“”的必要不充分条件.故选:C二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、①②③【解析】!由题函数在区间上是增函数,则由可得为奇函数,则①函数在区间(,0)上是增函数,正确;由可得,即有满足条件的正整数的最大值为3,故②正确;由于由题意可得对称轴,即有.,故③正确故答案为①②③【点睛】本题考查正弦函数的图象和性质,重点是对称性和单调性的运用,考查运算能力,属于中档题14、(0,-2)【解析】设点坐标为,利用斜率与倾斜角关系可知,解得即可.【详解】因为在轴上,所以可设点坐标为,又因为,则,解得,因此,故答案为.【点睛】本题主要考查了直线的斜率计算公式与倾斜角的正切之间的关系,属于基础题.15、【解析】根据图象和已知信息求出的解析式,代值计算可得的值.【详解】由已知可得,在处附近单调递增,且,故,又因为点是函数在轴右侧的第一个对称中心,所以,,可得,故,因此,.故答案为:.16、【解析】根据,并结合基本不等式“1”的用法求解即可.【详解】解:因为,所以,当且仅当时,等号成立故函数的最小值为.故答案为:三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1)g(x)=22x-2x+2,定义域为[0,1](2)最大值为-3,最小值为-4【解析】(1)根据函数,得到f(2x)和f(x+2)的解析式求解;再根据f(x)=2x的定义域是[0,3],由求g(x)的定义域;(2)由(1)得g(x)=22x-2x+2,设2x=t,t∈[1,2],转化为二次函数求解.【小问1详解】解:因为函数,所以f(2x)=22x,f(x+2)=2x+2,所以g(x)=f(2x)-f(x+2)=22x-2x+2,∵f(x)=2x的定义域是[0,3],∴,解得0≤x≤1,∴g(x)的定义域为[0,1]【小问2详解】由(1)得g(x)=22x-2x+2,设2x=t,则t∈[1,2],∴g(t)=t2-4t=,∴g(t)在[1,2]上单调递减,∴g(t)max=g(1)=-3,g(t)min=g(2)=-4∴函数g(x)的最大值为-3,最小值为-418、(1)(2)【解析】(1)根据偶函数的定义直接求解即可;(2)由题知命题“,”为真命题,进而得对,且恒成立,再分离参数求解即可得的取值范围是【小问1详解】解:因为函数为偶函数,所以,即,所以,即,所以.【小问2详解】解:因为命题“,”为假命题,所以命题“,”为真命题,所以,对,且恒成立,所以,对,且恒成立,由对勾函数性质知,函数在上单调递增,所以,且,即实数的取值范围是.19、(1)(2)【解析】(1)通过直线l和直线:平行,得到斜率,再由直线l过点,用点斜式写出方程.(2)先求出圆心O到直线l的距离,再根据弦长公式求解.【详解】(1),,又因为直线l过点∴直线l的方程为:,即(2)因为圆心O到直线l的距离为,所以【点睛】本题主要考查了直线方程的求法和直线与圆的位置关系中的弦长问题,还考查了运算求解的能力,属于中档题.20、(1)见解析;(2)见解析;(3).【解析】(1)连接交于点,连接,利用中位线定理得出∥,故平面;(2)由⊥底面,得,结合得平面,于是,结合得平面,故而,结合,即可得出平面;;(3)依题意,可得试题解析:(1)连接交于点,连接∵底面是正方形,∴点是的中点又为的中点,∴∥又平面,平面,∴∥平面.(2)∵⊥底面,平面,∴∵底面是正方形,∴.又,平面,平面,∴平面.又平面,∴∵,是的中点,∴.又平面,平面,,∴平面.而平面∴.又,且,又平面,平面,∴平面.(Ⅲ)∵是的中点,.【点睛】本题考查了线面平

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论