




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届河南省驻马店市上蔡二高高一上数学期末考试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12小题,共60分)1.下列函数中最小正周期为的是A. B.C. D.2.方程的解所在的区间为()A. B.C. D.3.函数的零点所在的一个区间是()A. B.C. D.4.已知H是球的直径AB上一点,AH:HB=1:2,AB⊥平面,H为垂足,截球所得截面的面积为,则球的表面积为A. B.C. D.5.已知圆C与直线及都相切,圆心在直线上,则圆C的方程为()A. B.C. D.6.已知函数,且,则A. B.0C. D.37.已知,若,则m的值为()A.1 B.C.2 D.48.“”是“幂函数为偶函数”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件9.下列函数中,在区间上为减函数的是()A. B.C. D.10.已知角的顶点与原点重合,它的始边与轴的非负半轴重合,它的终边上一点坐标为,.则为()A. B.C. D.11.设,,若,则ab的最小值是()A.5 B.9C.16 D.2512.如图,一个水平放置的平面图形的直观图是边长为2的菱形,且,则原平面图形的周长为()A. B.C. D.8二、填空题(本大题共4小题,共20分)13.若函数在区间上为减函数,则实数的取值范围为________14.写出一个能说明“若函数满足,则为奇函数”是假命题的函数:______15.若函数在区间上为增函数,则实数的取值范围为______.16.函数,则________三、解答题(本大题共6小题,共70分)17.已知函数,若区间上有最大值5,最小值2.(1)求的值(2)若,在上单调,求的取值范围.18.已知扇形的圆心角是,半径为,弧长为.(1)若,,求扇形的弧长;(2)若扇形的周长为,当扇形的圆心角为多少弧度时,这个扇形的面积最大,并求出此时扇形面积的最大值.19.已知集合为非空数集,定义,.(1)若集合,直接写出集合及;(2)若集合,,且,求证;(3)若集,且,求集合中元素的个数的最大值.20.已知函数的图象与的图象关于轴对称,且的图象过点.(1)若成立,求的取值范围;(2)若对于任意,不等式恒成立,求实数的取值范围.21.正数x,y满足.(1)求xy的最小值;(2)求x+2y的最小值22.函数,在内只取到一个最大值和一个最小值,且当时,;当时,(1)求此函数的解析式;(2)求此函数的单调递增区间
参考答案一、选择题(本大题共12小题,共60分)1、A【解析】利用周期公式对四个选项中周期进行求解【详解】A项中Tπ,B项中T,C项中T,D项中T,故选A【点睛】本题主要考查了三角函数周期公式的应用.对于带绝对值的函数解析式,可结合函数的图象来判断函数的周期2、C【解析】将方程转化为函数的零点问题,根据函数单调性判断零点所处区间即可.【详解】函数在上单增,由,知,函数的根处在里,故选:C3、B【解析】判断函数的单调性,再借助零点存在性定理判断作答.【详解】函数在R上单调递增,而,,所以函数的零点所在区间为.故选:B4、D【解析】设球的半径为,根据题意知由与球心距离为的平面截球所得的截面圆的面积是,我们易求出截面圆的半径为1,根据球心距、截面圆半径、球半径构成直角三角形,满足勾股定理,我们易求出该球的半径,进而求出球的表面积【详解】设球的半径为,∵,∴平面与球心的距离为,∵截球所得截面的面积为,∴时,,故由得,∴,∴球的表面积,故选D【点睛】本题主要考查的知识点是球的表面积公式,若球的截面圆半径为,球心距为,球半径为,则球心距、截面圆半径、球半径构成直角三角形,满足勾股定理,属于中档题.5、D【解析】根据圆心在直线上,设圆心坐标为,然后根据圆C与直线及都相切,由求解.【详解】因为圆心在直线上,设圆心坐标为,因为圆C与直线及都相切,所以,解得,∴圆心坐标为,又,∴,∴圆的方程为,故选:D.6、D【解析】分别求和,联立方程组,进行求解,即可得到答案.【详解】由题意,函数,且,,则,两式相加得且,即,,则,故选D【点睛】本题主要考查了函数值的计算,结合函数奇偶性的性质建立方程组是解决本题的关键,着重考查了运算与求解能力,属于基础题.7、B【解析】依题意可得,列方程解出【详解】解:,,故选:8、C【解析】根据函数的奇偶性的定义和幂函数的概念,结合充分条件、必要条件的判定方法,即可求解.详解】由,即,解得或,当时,,此时函数的定义域为关于原点对称,且,所以函数为偶函数;当时,,此时函数的定义域为关于原点对称,且,所以函数为偶函数,所以充分性成立;反之:幂函数,则满足,解得或或,当时,,此时函数为偶函数;当时,,此时函数为偶函数,当时,,此时函数为奇函数函数,综上可得,实数或,即必要性成立,所以“”是“幂函数为偶函数”的充要条件.故选:C.9、D【解析】根据基本初等函数的单调性及复合函数单调性求解.【详解】当时,在上单调递减,所以在区间上为增函数;由指数函数单调性知在区间上单调递增;由在区间上为增函数,为增函数,可知在区间上为增函数;知在区间上为减函数.故选:D10、D【解析】根据正弦函数的定义可得选项.【详解】的终边上有一点,,.故选:D.11、D【解析】结合基本不等式来求得的最小值.【详解】,,,,当且仅当时等号成立,由.故选:D12、B【解析】利用斜二测画法还原直观图即得.【详解】由题可知,∴,还原直观图可得原平面图形,如图,则,∴,∴原平面图形的周长为.故选:B.二、填空题(本大题共4小题,共20分)13、【解析】分类讨论,时根据二次函数的性质求解【详解】时,满足题意;时,,解得,综上,故答案为:14、(答案不唯一)【解析】根据余弦型函数的性质求解即可.【详解】解:因为,所以的周期为4,所以余弦型函数都满足,但不是奇函数故答案为:15、【解析】由复合函数的同增异减性质判断得在上单调递减,再结合对称轴和区间边界值建立不等式即可求解.【详解】由复合函数的同增异减性质可得,在上严格单调递减,二次函数开口向上,对称轴为所以,即故答案为:16、【解析】利用函数的解析式可计算得出的值.【详解】由已知条件可得.故答案为:.三、解答题(本大题共6小题,共70分)17、(1)或;(2).【解析】(1)分和两种情况讨论,根据单调性的不同分别代入求值即可;(2)易知也为二次函数,若要在区间上单调,则对称轴在区间外即可.【详解】(1)由可得二次函数的对称轴为,①当时,在上为增函数,可得,所以,当时,在上为减函数,可得,解得;(2)即,在上单调,或即或,故的取值范围为.18、(1);(2)当时,扇形面积最大值.【解析】(1)利用扇形弧长公式直接求解即可;(2)根据扇形周长可得,代入扇形面积公式,由二次函数最值可确定结果.【小问1详解】,扇形的弧长;【小问2详解】扇形的周长,,扇形面积,则当,,即当时,扇形面积最大值.19、(1),;(2)证明见解析;(3)1347.【解析】(1)根据题目定义,直接得到集合A+及A﹣;(2)根据两集合相等即可找到x1,x2,x3,x4的关系;(3)通过假设A集合{m,m+1,m+2,…,4040},m≤2020,m∈N,求出相应的A+及A﹣,通过A+∩A﹣=∅建立不等关系求出相应的值【详解】(1)根据题意,由,则,;(2)由于集合,,且,所以中也只包含四个元素,即,剩下的,所以;(3)设满足题意,其中,则,∴,,∴,∵,由容斥原理,中最小的元素为0,最大的元素为,∴,∴,∴,实际上当时满足题意,证明如下:设,则,,依题意有,即,故的最小值为674,于是当时,中元素最多,即时满足题意,综上所述,集合中元素的个数的最大值是1347.【点睛】关键点点睛:第三问集合中元素的个数最多时,应满足中的最大值小于中的最小值,另外容斥原理的应用也是解题的关键.20、(1);(2).【解析】利用已知条件得到的值,进而得到的解析式,再利用函数的图象关于轴对称,可得的解析式;(1)先利用对数函数的单调性,列出不等式组求解即可;(2)对于任意恒成立等价于,令,,利用二次函数求解即可.【详解】,,,;由已知得,即.(1)在上单调递减,,解得,的取值范围为.(2),对于任意恒成立等价于,,,令,,则,,当,即,即时,.【点睛】结论点睛:本题考查不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数,(1)若,,总有成立,故;(2)若,,有成立,故;(3)若,,有成立,故;(4)若,,有,则的值域是值域的子集21、(1)36;(2)【解析】(1)由基本不等式可得,再求解即可;(2)由,再求解即可.【详解】解:(1)由得xy≥36,当且仅当,即时取等号,故xy的最小值为36.(2)由题意可得,当且仅当,即时取等号,故x+2y的最小值为.【点睛】本题考查了基
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 吉林农业大学《大数据专业英语》2023-2024学年第二学期期末试卷
- 毕节工业职业技术学院《计量统计学》2023-2024学年第二学期期末试卷
- 烟台大学《对外汉语教学法》2023-2024学年第二学期期末试卷
- 梅河口康美职业技术学院《计算机专业英语阅读》2023-2024学年第二学期期末试卷
- 海南省东方市民族中学2024-2025学年高三下学期第二次月考历史试题试卷含解析
- 江苏省泰安市长城中学2025年高三下学期3月月考(文理)语文试题含解析
- 广东工程职业技术学院《行业创业实务》2023-2024学年第二学期期末试卷
- 大理护理职业学院《数学史与数学思想方法》2023-2024学年第二学期期末试卷
- 广西壮族自治区百色市田东中学2025届高三生物试题一模试卷含解析
- 1.2 《离骚(节选)》 任务式课件(共51张) 2024-2025学年统编版统编版高中语文选择性必修下册
- 建筑空间组合论
- 特种工作作业人员体格检查表
- 清远市城市树木修剪技术指引(试行)
- 广州国际文化中心详细勘察报告正文-171229end
- 警察礼仪(PPT53页)
- 《关于加强高等学校食堂管理工作的意见》解读
- 《尚艺发型标准剪裁》PPT课件
- 中国现代文学史00537
- 110kV升压站电气施工工艺及方案培训资料(共107页)
- 年产万吨碳酸饮料厂的工艺设计
- 流砂过滤器设计说明书
评论
0/150
提交评论