




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届贵州省黔西县数学高一上期末教学质量检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.已知,则下列选项错误的是()A. B.C.的最大值是 D.的最小值是2.设函数,对于满足的一切值都有,则实数的取值范围为A B.C. D.3.用二分法求函数零点时,用计算器得到下表:1.001.251.3751.501.07940.1918-0.3604-0.9989则由表中数据,可得到函数的一个零点的近似值(精确度为0.1)为A.1.125 B.1.3125C.1.4375 D.1.468754.函数的零点个数为()A.2 B.3C.4 D.55.在梯形中,,,是边上的点,且.若记,,则()A. B.C. D.6.用二分法求如图所示函数f(x)的零点时,不可能求出的零点是()A.x1 B.x2C.x3 D.x47.不等式x2≥2x的解集是()A.{x|x≥2} B.{x|x≤2}C.{x|0≤x≤2} D.{x|x≤0或x≥2}8.浙江省在先行探索高质量发展建设共同富裕示范区,统计数据表明,2021年前三季度全省生产总值同比增长10.6%,两年平均增长6.4%,倘若以8%的年平均增长率来计算,经过多少年可实现全省生产总值翻一番(,)()A.7年 B.8年C.9年 D.10年9.已知函数在上存在零点,则的取值范围为()A. B.C. D.10.要得到函数的图象,只需将函数的图象A.向左平移个单位 B.向右平移个单位C.向左平移个单位 D.向右平移个单位二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.已知函数的定义域和值域都是集合,其定义如表所示,则____________.x01201212.过点且与直线垂直的直线方程为___________.13.已知扇形的周长为8,则扇形的面积的最大值为_________,此时扇形的圆心角的弧度数为________14.若三棱锥中,,其余各棱长均为5,则三棱锥内切球的表面积为_____15.命题“”的否定是___________.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.近年来,我国在航天领域取得了巨大成就,得益于我国先进的运载火箭技术.据了解,在不考虑空气阻力和地球引力的理想状态下,可以用公式计算火箭的最大速度v(单位:m/s).其中(单位m/s)是喷流相对速度,m(单位:kg)是火箭(除推进剂外)的质量,M(单位:kg)是推进剂与火箭质量的总和,称为“总质比”,已知A型火箭的喷流相对速度为2000m/s参考数据:,(1)当总质比为230时,利用给出的参考数据求A型火箭的最大速度;(2)经过材料更新和技术改进后,A型火箭的喷流相对速度提高到了原来的1.5倍,总质比变为原来的,若要使火箭的最大速度增加500m/s,记此时在材料更新和技术改进前的总质比为T,求不小于T的最小整数?17.已知函数(1)求不等式的解集;(2)将图像上所有点的横坐标缩短为原来的(纵坐标不变),再将所得图像向右平移个单位长度,得到函数的图像.求在区间上的值域18.函数的定义域为D,若存在正实数k,对任意的,总有,则称函数具有性质.(1)判断下列函数是否具有性质,并说明理由.①;②;(2)已知为二次函数,若存在正实数k,使得函数具有性质.求证:是偶函数;(3)已知为给定的正实数,若函数具有性质,求的取值范围.19.已知函数.(1)用函数单调性的定义证明在区间上是增函数;(2)解不等式.20.已知函数f(x)=sinxcosx−cos2x+m的最大值为1.(1)求m的值;(2)求当x[0,]时f(x)的取值范围;(3)求使得f(x)≥成立的x的取值集合.21.已知点P是圆C:(x-3)2+y2=4上的动点,点A(-3,0),M是线段AP的中点(1)求点M的轨迹方程;(2)若点M的轨迹与直线l:2x-y+n=0交于E,F两点,若直角坐标系的原点在以线段为直径的圆上,求n的值
参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、D【解析】根据题意求出b的范围可以判断A,然后结合基本不等式判断B,C,最后消元通过二次函数的角度判断D.【详解】对A,,正确;对B,,当且仅当时取“=”,正确;对C,,当且仅当时取“=”,正确;对D,由题意,,由A可知,所以,错误.故选:D.2、D【解析】用分离参数法转化为求函数的最大值得参数范围【详解】满足的一切值,都有恒成立,,对满足的一切值恒成立,,,时等号成立,所以实数的取值范围为,故选:D.3、B【解析】根据二分法的思想,确定函数零点所在区间,并确保精确度为0.1即可.【详解】根据二分法的思想,因为,故的零点在区间内,但区间的长度为,不满足题意,因而取区间的中点,由表格知,故的零点在区间内,但区间的长度为,不满足题意,因而取区间的中点,可知区间和中必有一个存在的零点,而区间长度为,因此是一个近似解,故选:B.【点睛】本题考查二分法求零点问题,注意满足题意的区间要满足两个条件:①区间端点的函数值要异号;②区间长度要小于精确度0.1.4、B【解析】先用诱导公式得化简,再画出图象,利用数形结合即可【详解】由三角函数的诱导公式得,函数的零点个数,即方程的根的个数,即曲线()与的公共点个数.在同一坐标系中分别作出图象,观察可知两条曲线的交点个数为3,故函数的零点个数为3故选:B.5、A【解析】作出图形,由向量加法的三角形法则得出可得出答案.【详解】如下图所示:由题意可得,由向量加法的三角形法则可得.故选:A.【点睛】本题考查利用基底来表示向量,涉及平面向量加法的三角形法则的应用,考查数形结合思想的应用,属于基础题.6、C【解析】观察图象可知:点x3的附近两旁的函数值都为负值,∴点x3不能用二分法求,故选C.7、D【解析】由x2≥2x解得:x(x-2)≥0,所以x≤0或x≥2.选D.8、D【解析】由题意,可得,,两边取常用对数,根据参数数据即可求解.【详解】解:设经过年可实现全省生产总值翻一番,全省生产总值原来为,由题意可得,即,两边取常用对数可得,所以,因为,所以,所以经过10年可实现全省生产总值翻一番.故选:D.9、A【解析】根据零点存在定理及函数单调性可知,,解不等式组即可求得的取值范围.【详解】因为在上单调递增,根据零点存在定理可得,解得.故选:A【点睛】本题考查了函数单调性的判断,零点存在定理的应用,根据零点所在区间求参数的取值范围,属于基础题.10、C【解析】化函数解析式为,再由图象平移的概念可得【详解】解要得到函数的图象,只需将函数的图象向左平移个单位,即:故选C【点睛】本题考查函数图象平移变换,要注意的左右平移变换只针对自变量加减,即函数的图象向左平移个单位,得图象的解析式为二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、【解析】根据表格从里层往外求即可.【详解】解:由表可知,.故答案为:.12、【解析】利用垂直关系设出直线方程,待定系数法求出,从而求出答案.【详解】设与直线垂直的直线为,将代入方程,,解得:,则与直线垂直的直线为.故答案为:13、①.4②.2【解析】根据扇形的面积公式,结合配方法和弧长公式进行求解即可.【详解】设扇形所在圆周的半径为r,弧长为l,有,,此时,,故答案为:;14、【解析】由题意得,易知内切球球心到各面的距离相等,设为的中点,则在上且为的中点,在中,,所以三棱锥内切球的表面积为15、,.【解析】根据特称命题的否定的性质进行求解即可.【详解】特称命题的否定,先把存在量词改为全称量词,再把结论进行否定即可,命题“,”的否定是“,”,故答案为:,.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1)m/s(2)45【解析】(1)运用代入法直接求解即可;(2)根据题意列出不等式,结合对数的运算性质和已知题中所给的参考数据进行求解即可.【小问1详解】当总质比为230时,,即A型火箭的最大速度为.【小问2详解】A型火箭的喷流相对速度提高到了原来的1.5倍,所以A型火箭的喷流相对速度为,总质比为,由题意得:因为,所以,即,所以不小于T的最小整数为4517、(1),.(2).【解析】(1)利用辅助角公式化简函数的解析式,根据正弦函数的性质可求得答案;(2)根据函数的图象变换得到函数的解析式,再由正弦函数的性质可求得的值域.【小问1详解】解:因为,∴,即,所以,即,,∴的解集为,【小问2详解】解:由题可知,当时,,所以,所以,所以在区间上值域为18、(1)具有性质;不具有性质;(2)见解析;(3)【解析】(1)根据定义即可求得具有性质;根据特殊值即可判断不具有性质;(2)利用反证法,假设二次函数不是偶函数,根据题意推出与题设矛盾即可证明;(3)根据题意得到,再根据具有性质,得到,解不等式即可.【详解】解:(1),定义域为,则有,显然存在正实数,对任意的,总有,故具有性质;,定义域为,则,当时,,故不具有性质;(2)假设二次函数不是偶函数,设,其定义域为,即,则,易知,是无界函数,故不存在正实数k,使得函数具有性质,与题设矛盾,故是偶函数;(3)的定义域为,,具有性质,即存在正实数k,对任意的,总有,即,即,即,即,即,即,通过对比解得:,即.【点睛】方法点睛:应用反证法时必须先否定结论,把结论的反面作为条件,且必须根据这一条件进行推理,否则,仅否定结论,不从结论的反面出发进行推理,就不是反证法.所谓矛盾主要指:①与已知条件矛盾;②与假设矛盾;③与定义、公理、定理矛盾;④与公认的简单事实矛盾;⑤自相矛盾.19、(1)见解析;(2)【解析】(1)利用函数单调性的定义证明即可;(2)根据在区间上单调递增,得到,即可解出的集合.【详解】解:(1)设任意的且,则,且,,,即,即,即对任意的,当时,都有,在区间上增函数;(2)由(1)知:在区间上是增函数;又,,即,即,解得:,即的解集为:.【点睛】方法点睛:定义法判定函数在区间上的单调性的一般步骤:
取值:任取,,规定,
作差:计算,
定号:确定的正负,
得出结论:根据同增异减得出结论.20、(1)(2)(3)【解析】(1)将函数f(x)=sinxcosx−cos2x+m化为只含有一个三角函数的形式,根据三角函数的性质求其最大值,可得答案;(2)根据x[0,],求出的范围,根据三角函数性质,求得答案;(3)根据f(x)≥,利用三角函数的性质,即可求得答案.【
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 吉林农业大学《大数据专业英语》2023-2024学年第二学期期末试卷
- 毕节工业职业技术学院《计量统计学》2023-2024学年第二学期期末试卷
- 烟台大学《对外汉语教学法》2023-2024学年第二学期期末试卷
- 梅河口康美职业技术学院《计算机专业英语阅读》2023-2024学年第二学期期末试卷
- 海南省东方市民族中学2024-2025学年高三下学期第二次月考历史试题试卷含解析
- 江苏省泰安市长城中学2025年高三下学期3月月考(文理)语文试题含解析
- 广东工程职业技术学院《行业创业实务》2023-2024学年第二学期期末试卷
- 大理护理职业学院《数学史与数学思想方法》2023-2024学年第二学期期末试卷
- 广西壮族自治区百色市田东中学2025届高三生物试题一模试卷含解析
- 1.2 《离骚(节选)》 任务式课件(共51张) 2024-2025学年统编版统编版高中语文选择性必修下册
- 建筑空间组合论
- 特种工作作业人员体格检查表
- 清远市城市树木修剪技术指引(试行)
- 广州国际文化中心详细勘察报告正文-171229end
- 警察礼仪(PPT53页)
- 《关于加强高等学校食堂管理工作的意见》解读
- 《尚艺发型标准剪裁》PPT课件
- 中国现代文学史00537
- 110kV升压站电气施工工艺及方案培训资料(共107页)
- 年产万吨碳酸饮料厂的工艺设计
- 流砂过滤器设计说明书
评论
0/150
提交评论