版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届海南省儋州市重点中学中考数学模试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1.如图所示,在平面直角坐标系中,点A、B、C的坐标分别为(﹣1,3)、(﹣4,1)、(﹣2,1),将△ABC沿一确定方向平移得到△A1B1C1,点B的对应点B1的坐标是(1,2),则点A1,C1的坐标分别是()A.A1(4,4),C1(3,2) B.A1(3,3),C1(2,1)C.A1(4,3),C1(2,3) D.A1(3,4),C1(2,2)2.如图,在▱ABCD中,对角线AC的垂直平分线分别交AD、BC于点E、F,连接CE,若△CED的周长为6,则▱ABCD的周长为()A.6 B.12 C.18 D.243.如图,矩形ABCD的边AB=1,BE平分∠ABC,交AD于点E,若点E是AD的中点,以点B为圆心,BE长为半径画弧,交BC于点F,则图中阴影部分的面积是()A.2- B. C.2- D.4.某工厂第二季度的产值比第一季度的产值增长了x%,第三季度的产值又比第二季度的产值增长了x%,则第三季度的产值比第一季度的产值增长了()A.2x% B.1+2x% C.(1+x%)x% D.(2+x%)x%5.下面的统计图反映了我市2011﹣2016年气温变化情况,下列说法不合理的是()A.2011﹣2014年最高温度呈上升趋势B.2014年出现了这6年的最高温度C.2011﹣2015年的温差成下降趋势D.2016年的温差最大6.下列说法正确的是()A.掷一枚均匀的骰子,骰子停止转动后,6点朝上是必然事件B.甲、乙两人在相同条件下各射击10次,他们的成绩平均数相同,方差分别是,,则甲的射击成绩较稳定C.“明天降雨的概率为”,表示明天有半天都在降雨D.了解一批电视机的使用寿命,适合用普查的方式7.如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半径为2,圆心角为60°,则图中阴影部分的面积是()A. B. C. D.8.如图,△ABC内接于⊙O,BC为直径,AB=8,AC=6,D是弧AB的中点,CD与AB的交点为E,则CE:DE等于()A.3:1 B.4:1 C.5:2 D.7:29.如图,在正方形ABCD中,AB=9,点E在CD边上,且DE=2CE,点P是对角线AC上的一个动点,则PE+PD的最小值是()A. B. C.9 D.10.下列运算结果为正数的是()A.1+(–2) B.1–(–2) C.1×(–2) D.1÷(–2)二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,数轴上点A、B、C所表示的数分别为a、b、c,点C是线段AB的中点,若原点O是线段AC上的任意一点,那么a+b-2c=______.12.如图,矩形ABCD,AB=2,BC=1,将矩形ABCD绕点A顺时针旋转90°得矩形AEFG,连接CG、EG,则∠CGE=________.13.函数y=的自变量x的取值范围为____________.14.我国倡导的“一带一路”建设将促进我国与世界各国的互利合作,“一带一路”地区覆盖总人口约为4400000000人,将数据4400000000用科学记数法表示为______.15.如图Rt△ABC中,∠C=90°,AC=6,BC=8,D是AB的中点,P是直线BC上一点,把△BDP沿PD所在直线翻折后,点B落在点Q处,如果QD⊥BC,那么点P和点B间的距离等于____.16.若am=5,an=6,则am+n=________.三、解答题(共8题,共72分)17.(8分)汤姆斯杯世界男子羽毛球团体赛小组赛比赛规则:两队之间进行五局比赛,其中三局单打,两局双打,五局比赛必须全部打完,赢得三局及以上的队获胜.假如甲,乙两队每局获胜的机会相同.(1)若前四局双方战成2:2,那么甲队最终获胜的概率是__________;(2)现甲队在前两局比赛中已取得2:0的领先,那么甲队最终获胜的概率是多少?18.(8分)平面直角坐标系中(如图),已知抛物线经过点和,与y轴相交于点C,顶点为P.(1)求这条抛物线的表达式和顶点P的坐标;(2)点E在抛物线的对称轴上,且,求点E的坐标;(3)在(2)的条件下,记抛物线的对称轴为直线MN,点Q在直线MN右侧的抛物线上,,求点Q的坐标.19.(8分)先化简,然后从中选出一个合适的整数作为的值代入求值.20.(8分)如图,某次中俄“海上联合”反潜演习中,我军舰A测得潜艇C的俯角为30°.位于军舰A正上方1000米的反潜直升机B侧得潜艇C的俯角为68°.试根据以上数据求出潜艇C离开海平面的下潜深度.(结果保留整数.参考数据:sin68°≈0.9,cos68°≈0.4,tan68°≈2.5,≈1.7)21.(8分)为了掌握我市中考模拟数学试题的命题质量与难度系数,命题教师赴我市某地选取一个水平相当的初三年级进行调研,命题教师将随机抽取的部分学生成绩(得分为整数,满分为160分)分为5组:第一组85~100;第二组100~115;第三组115~130;第四组130~145;第五组145~160,统计后得到如图1和如图2所示的频数分布直方图(每组含最小值不含最大值)和扇形统计图,观察图形的信息,回答下列问题:(1)本次调查共随机抽取了该年级多少名学生?并将频数分布直方图补充完整;(2)若将得分转化为等级,规定:得分低于100分评为“D”,100~130分评为“C”,130~145分评为“B”,145~160分评为“A”,那么该年级1600名学生中,考试成绩评为“B”的学生大约有多少名?(3)如果第一组有两名女生和两名男生,第五组只有一名是男生,针对考试成绩情况,命题教师决定从第一组、第五组分别随机选出一名同学谈谈做题的感想,请你用列表或画树状图的方法求出所选两名学生刚好是一名女生和一名男生的概率.22.(10分)如图,在矩形纸片ABCD中,AB=6,BC=1.把△BCD沿对角线BD折叠,使点C落在C′处,BC′交AD于点G;E、F分别是C′D和BD上的点,线段EF交AD于点H,把△FDE沿EF折叠,使点D落在D′处,点D′恰好与点A重合.(1)求证:△ABG≌△C′DG;(2)求tan∠ABG的值;(3)求EF的长.23.(12分)某校为了解学生体质情况,从各年级随机抽取部分学生进行体能测试,每个学生的测试成绩按标准对应为优秀、良好、及格、不及格四个等级,统计员在将测试数据绘制成图表时发现,优秀漏统计4人,良好漏统计6人,于是及时更正,从而形成如图图表,请按正确数据解答下列各题:学生体能测试成绩各等次人数统计表体能等级调整前人数调整后人数优秀8良好16及格12不及格4合计40(1)填写统计表;(2)根据调整后数据,补全条形统计图;(3)若该校共有学生1500人,请你估算出该校体能测试等级为“优秀”的人数.24.如图①是一副创意卡通圆规,图②是其平面示意图,OA是支撑臂,OB是旋转臂.使用时,以点A为支撑点,铅笔芯端点B可绕点A旋转作出圆.已知OA=OB=10cm.(1)当∠AOB=18°时,求所作圆的半径(结果精确到0.01cm);(2)保持∠AOB=18°不变,在旋转臂OB末端的铅笔芯折断了一截的情况下,作出的圆与(1)中所作圆的大小相等,求铅笔芯折断部分的长度(结果精确到0.01cm,参考数据:sin9°≈0.1564,cos9°≈0.9877,sin18°≈0.3090,cos18°≈0.9511,可使用科学计算器).
参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解题分析】分析:根据B点的变化,确定平移的规律,将△ABC向右移5个单位、上移1个单位,然后确定A、C平移后的坐标即可.详解:由点B(﹣4,1)的对应点B1的坐标是(1,2)知,需将△ABC向右移5个单位、上移1个单位,则点A(﹣1,3)的对应点A1的坐标为(4,4)、点C(﹣2,1)的对应点C1的坐标为(3,2),故选A.点睛:此题主要考查了平面直角坐标系中的平移,关键是根据已知点的平移变化总结出平移的规律.2、B【解题分析】∵四边形ABCD是平行四边形,∴DC=AB,AD=BC,∵AC的垂直平分线交AD于点E,∴AE=CE,∴△CDE的周长=DE+CE+DC=DE+AE+DC=AD+DC=6,∴▱ABCD的周长=2×6=12,故选B.3、B【解题分析】
利用矩形的性质以及结合角平分线的性质分别求出AE,BE的长以及∠EBF的度数,进而利用图中阴影部分的面积=S-S-S,求出答案.【题目详解】∵矩形ABCD的边AB=1,BE平分∠ABC,∴∠ABE=∠EBF=45°,AD∥BC,∴∠AEB=∠CBE=45°,∴AB=AE=1,BE=,∵点E是AD的中点,∴AE=ED=1,∴图中阴影部分的面积=S−S−S=1×2−×1×1−故选B.【题目点拨】此题考查矩形的性质,扇形面积的计算,解题关键在于掌握运算公式4、D【解题分析】设第一季度的原产值为a,则第二季度的产值为,第三季度的产值为,则则第三季度的产值比第一季度的产值增长了故选D.5、C【解题分析】
利用折线统计图结合相应数据,分别分析得出符合题意的答案.【题目详解】A选项:年最高温度呈上升趋势,正确;
B选项:2014年出现了这6年的最高温度,正确;
C选项:年的温差成下降趋势,错误;
D选项:2016年的温差最大,正确;
故选C.【题目点拨】考查了折线统计图,利用折线统计图获取正确信息是解题关键.6、B【解题分析】
利用事件的分类、普查和抽样调查的特点、概率的意义以及方差的性质即可作出判断.【题目详解】解:A、掷一枚均匀的骰子,骰子停止转动后,6点朝上是可能事件,此选项错误;B、甲、乙两人在相同条件下各射击10次,他们的成绩平均数相同,方差分别是S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定,此选项正确;C、“明天降雨的概率为”,表示明天有可能降雨,此选项错误;D、解一批电视机的使用寿命,适合用抽查的方式,此选项错误;故选B.【题目点拨】本题考查方差;全面调查与抽样调查;随机事件;概率的意义,掌握基本概念是解题关键.7、B【解题分析】
根据菱形的性质得出△DAB是等边三角形,进而利用全等三角形的判定得出△ABG≌△DBH,得出四边形GBHD的面积等于△ABD的面积,进而求出即可.【题目详解】连接BD,∵四边形ABCD是菱形,∠A=60°,∴∠ADC=120°,∴∠1=∠2=60°,∴△DAB是等边三角形,∵AB=2,∴△ABD的高为,∵扇形BEF的半径为2,圆心角为60°,∴∠4+∠5=60°,∠3+∠5=60°,∴∠3=∠4,设AD、BE相交于点G,设BF、DC相交于点H,在△ABG和△DBH中,,∴△ABG≌△DBH(ASA),∴四边形GBHD的面积等于△ABD的面积,∴图中阴影部分的面积是:S扇形EBF-S△ABD==.故选B.8、A【解题分析】
利用垂径定理的推论得出DO⊥AB,AF=BF,进而得出DF的长和△DEF∽△CEA,再利用相似三角形的性质求出即可.【题目详解】连接DO,交AB于点F,∵D是的中点,∴DO⊥AB,AF=BF,∵AB=8,∴AF=BF=4,∴FO是△ABC的中位线,AC∥DO,∵BC为直径,AB=8,AC=6,∴BC=10,FO=AC=1,∴DO=5,∴DF=5-1=2,∵AC∥DO,∴△DEF∽△CEA,∴,∴==1.故选:A.【题目点拨】此题主要考查了垂径定理的推论以及相似三角形的判定与性质,根据已知得出△DEF∽△CEA是解题关键.9、A【解题分析】解:如图,连接BE,设BE与AC交于点P′,∵四边形ABCD是正方形,∴点B与D关于AC对称,∴P′D=P′B,∴P′D+P′E=P′B+P′E=BE最小.即P在AC与BE的交点上时,PD+PE最小,为BE的长度.∵直角△CBE中,∠BCE=90°,BC=9,CE=CD=3,∴BE==.故选A.点睛:此题考查了轴对称﹣﹣最短路线问题,正方形的性质,要灵活运用对称性解决此类问题.找出P点位置是解题的关键.10、B【解题分析】
分别根据有理数的加、减、乘、除运算法则计算可得.【题目详解】解:A、1+(﹣2)=﹣(2﹣1)=﹣1,结果为负数;B、1﹣(﹣2)=1+2=3,结果为正数;C、1×(﹣2)=﹣1×2=﹣2,结果为负数;D、1÷(﹣2)=﹣1÷2=﹣,结果为负数;故选B.【题目点拨】本题主要考查有理数的混合运算,熟练掌握有理数的四则运算法则是解题的关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、1【解题分析】∵点A、B、C所表示的数分别为a、b、c,点C是线段AB的中点,∴由中点公式得:c=,∴a+b=2c,∴a+b-2c=1.故答案为1.12、45°【解题分析】试题解析:如图,连接CE,∵AB=2,BC=1,∴DE=EF=1,CD=GF=2,在△CDE和△GFE中∴△CDE≌△GFE(SAS),∴CE=GE,∠CED=∠GEF,故答案为13、x≥-1【解题分析】试题分析:由题意得,x+1≥0,解得x≥﹣1.故答案为x≥﹣1.考点:函数自变量的取值范围.14、4.4×1【解题分析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【题目详解】4400000000的小数点向左移动9位得到4.4,所以4400000000用科学记数法可表示为:4.4×1,故答案为4.4×1.【题目点拨】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.15、2.1或2【解题分析】
在Rt△ACB中,根据勾股定理可求AB的长,根据折叠的性质可得QD=BD,QP=BP,根据三角形中位线定理可得DE=AC,BD=AB,BE=BC,再在Rt△QEP中,根据勾股定理可求QP,继而可求得答案.【题目详解】如图所示:在Rt△ACB中,∠C=90°,AC=6,BC=8,
AB==2,
由折叠的性质可得QD=BD,QP=BP,
又∵QD⊥BC,
∴DQ∥AC,
∵D是AB的中点,
∴DE=AC=3,BD=AB=1,BE=BC=4,
①当点P在DE右侧时,
∴QE=1-3=2,
在Rt△QEP中,QP2=(4-BP)2+QE2,
即QP2=(4-QP)2+22,
解得QP=2.1,
则BP=2.1.
②当点P在DE左侧时,同①知,BP=2
故答案为:2.1或2.【题目点拨】考查了折叠的性质、直角三角形的性质以及勾股定理.此题难度适中,注意数形结合思想的应用,注意折叠中的对应关系.16、1.【解题分析】
根据同底数幂乘法性质am·an=am+n,即可解题.【题目详解】解:am+n=am·an=5×6=1.【题目点拨】本题考查了同底数幂乘法计算,属于简单题,熟悉法则是解题关键.三、解答题(共8题,共72分)17、(1)12;(2)【解题分析】分析:(1)直接利用概率公式求解;(2)画树状图展示所有8种等可能的结果数,再找出甲至少胜一局的结果数,然后根据概率公式求.详解:(1)甲队最终获胜的概率是12(2)画树状图为:共有8种等可能的结果数,其中甲至少胜一局的结果数为7,所以甲队最终获胜的概率=78点睛:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.18、(1),顶点P的坐标为;(2)E点坐标为;(3)Q点的坐标为.【解题分析】
(1)利用交点式写出抛物线解析式,把一般式配成顶点式得到顶点P的坐标;(2)设,根据两点间的距离公式,利用得到,然后解方程求出t即可得到E点坐标;(3)直线交轴于,作于,如图,利用得到,设,则,再在中利用正切的定义得到,即,然后解方程求出m即可得到Q点坐标.【题目详解】解:(1)抛物线解析式为,即,,顶点P的坐标为;(2)抛物线的对称轴为直线,设,,,解得,E点坐标为;(3)直线交x轴于F,作MN⊥直线x=2于H,如图,,而,,设,则,在中,,,整理得,解得(舍去),,Q点的坐标为.【题目点拨】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质和锐角三角函数的定义;会利用待定系数法求函数解析式;理解坐标与图形性质,记住两点间的距离公式.19、-1【解题分析】
先化简,再选出一个合适的整数代入即可,要注意a的取值范围.【题目详解】解:,当时,原式.【题目点拨】本题考查的是代数式的求值,熟练掌握代数式的化简是解题的关键.20、潜艇C离开海平面的下潜深度约为308米【解题分析】试题分析:过点C作CD⊥AB,交BA的延长线于点D,则AD即为潜艇C的下潜深度,用锐角三角函数分别在Rt△ACD中表示出CD和在Rt△BCD中表示出BD,利用BD=AD+AB二者之间的关系列出方程求解.试题解析:过点C作CD⊥AB,交BA的延长线于点D,则AD即为潜艇C的下潜深度,根据题意得:∠ACD=30°,∠BCD=68°,设AD=x,则BD=BA+AD=1000+x,在Rt△ACD中,CD===在Rt△BCD中,BD=CD•tan68°,∴325+x=•tan68°解得:x≈100米,∴潜艇C离开海平面的下潜深度为100米.点睛:本题考查了解直角三角形的应用,解题的关键是作出辅助线,从题目中找出直角三角形并选择合适的边角关系求解.视频21、(1)50(2)420(3)P=【解题分析】试题分析:(1)首先根据题意得:本次调查共随机抽取了该年级学生数为:20÷40%=50(名);则可求得第五组人数为:50﹣4﹣8﹣20﹣14=4(名);即可补全统计图;(2)由题意可求得130~145分所占比例,进而求出答案;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与所选两名学生刚好是一名女生和一名男生的情况,再利用概率公式求解即可求得答案.试题解析:(1)根据题意得:本次调查共随机抽取了该年级学生数为:20÷40%=50(名);则第五组人数为:50﹣4﹣8﹣20﹣14=4(名);如图:(2)根据题意得:考试成绩评为“B”的学生大约有×1600=448(名),答:考试成绩评为“B”的学生大约有448名;(3)画树状图得:∵共有16种等可能的结果,所选两名学生刚好是一名女生和一名男生的有8种情况,∴所选两名学生刚好是一名女生和一名男生的概率为:=.考点:1、树状图法与列表法求概率的知识,2、直方图与扇形统计图的知识视频22、(1)证明见解析(2)7/24(3)25/6【解题分析】(1)证明:∵△BDC′由△BDC翻折而成,∴∠C=∠BAG=90°,C′D=AB=CD,∠AGB=∠DGC′,∴∠ABG=∠ADE。在△ABG≌△C′DG中,∵∠BAG=∠C,AB=C′D,∠ABG=∠ADC′,∴△ABG≌△C′DG(ASA)。(2)解:∵由(1)可知△ABG≌△C′DG,∴GD=GB,∴AG+GB=AD。设AG=x,则GB=1﹣x,在Rt△ABG中,∵AB2+AG2=BG2,即62+x2=(1﹣x)2,解得x=。∴。(3)解:∵△AEF是△DEF翻折而成,∴EF垂直平分AD。∴HD=AD=4。∵tan∠ABG=tan∠ADE=。∴EH=HD×=4×。∵EF垂直平分AD,AB⊥AD,∴HF是△ABD的中位线。∴HF=AB=×6=3。∴EF=EH+HF=。(1)根据翻折变换的性质可知∠C=∠BAG=90°,C′D=AB=CD,∠AGB=∠DGC′,故可得出结论。(2)由(1)可知GD=GB,故AG+GB=AD,设AG=x,则GB=1-x,在Rt△ABG中利用勾股定理即可求出AG的长,从而得出ta
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025届河南省洛阳名校高二物理第一学期期末考试模拟试题含解析
- 2025届江苏省金陵中学高三物理第一学期期中经典模拟试题含解析
- 河南省名校联盟2025届物理高三上期末考试试题含解析
- 重庆三十二中学2025届高二物理第一学期期中监测试题含解析
- 辽宁省辽源市金鼎高级中学2025届物理高一第一学期期中经典模拟试题含解析
- 内蒙古乌兰察布市集宁地区2025届物理高二第一学期期末达标测试试题含解析
- 江苏省大丰市实验初级中学2025届物理高二上期末学业质量监测模拟试题含解析
- 2025届吉林省物理高二第一学期期中调研模拟试题含解析
- 陕西省咸阳市武功县2025届高二物理第一学期期中联考试题含解析
- 广州市岭南中学2025届物理高二上期末质量跟踪监视试题含解析
- 果蔬机械冷藏课件2
- 拼音复习-拼音转盘课件
- 项目进度管理培训(-)课件
- 医院合同管理办法
- 2023年度小区业主大会会议召开工作方案
- 高考语文 如何读懂诗歌 课件(32张PPT)
- 中压交联电缆电缆正、负和零序计算
- 3C战略三角模型
- 高标准农田建设示范工程质量管理体系与措施
- 学生顶岗实习安全教育课件
- 公司组织架构图模板课件
评论
0/150
提交评论