版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年福建厦门大同中学高一数学第一学期期末考试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.我国在文昌航天发射场用长征五号运载火箭成功发射探月工程端娥五号探测器,顺利将探测器送入预定轨道,经过两次轨道修正,嫦娥五号顺利进入环月轨道飞行,嫦娥五号从椭圆形环月轨道变为近圆形环月轨道,若这时把近圆形环月轨道看作圆形轨道,嫦娥五号距离月表400千米,已知月球半径约为1738千米,则嫦娥五号绕月每旋转弧度,飞过的路程约为()()A.1069千米 B.1119千米C.2138千米 D.2238千米2.已知是锐角,那么是()A.第一象限角 B.第二象限角C.小于180°的正角 D.第一或第二象限角3.函数的图象形如汉字“囧”,故称其为“囧函数”下列命题:①“囧函数”的值域为R;②“囧函数”在上单调递增;③“囧函数”的图象关于轴对称;④“囧函数”有两个零点;⑤“囧函数”的图象与直线至少有一个交点.正确命题的个数为A1 B.2C.3 D.44.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为A. B.C.90 D.815.函数的一部分图像如图所示,则()A. B.C. D.6.已知cosα=,cos(α+β)=-,且α,β∈,则cos(α-β)的值等于A.- B.C.- D.7.下列函数是偶函数的是A. B.C. D.8.已知函数,将图象向右平移个单位长度得到函数的图象,若对任意,都有成立,则的值为A. B.1C. D.29.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程看作时间的函数,其图象可能是A. B.C. D.10.设m,n为两条不同的直线,,为两个不同的平面,则下列结论正确的是()A.若,,则B.若,,,则C.若,,,则D.若,,,则二、填空题:本大题共6小题,每小题5分,共30分。11.已知a,b为直线,α,β,γ为平面,有下列四个命题:(1)a∥α,b∥β,则a∥b;(2)a⊥γ,b⊥γ,则a∥b;(3)a∥b,b⊂α,则a∥α;(4)a⊥b,a⊥α,则b∥α;其中正确命题是__12.计算值为______13.幂函数的图象经过点,则_____________.14.已知符号函数sgn(x),则函数f(x)=sgn(x)﹣2x的所有零点构成的集合为_____15.若函数在区间上有两个零点,则实数的取值范围是_______.16.以边长为2的正三角形的一条高所在直线为旋转轴,将该三角形旋转一周,所得几何体的表面积为__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,.(1)若的定义域为,求实数的取值范围;(2)若,函数为奇函数,且对任意,存在,使得,求实数的取值范围.18.已知,且为第二象限角(1)求的值;(2)求值.19.已知函数的一系列对应值如下表:(1)根据表格提供的数据求函数的一个解析式;(2)根据(1)的结果,若函数周期为,当时,方程恰有两个不同的解,求实数的取值范围.20.如图,有一块半径为4的半圆形钢板,计划裁剪成等腰梯形ABCD的形状,它的下底AB是圆O的直径,上底CD的端点在圆周上,连接OC两点,OC与OB所形成的夹角为.(1)写出这个梯形周长y和的函数解析式,并写出它的定义域;(2)求周长y的最大值以及此时梯形的面积.21.将函数的图象向左平移个单位后得到函数的图象,设函数(1)求函数的最小正周期;(2)若对任意恒成立,求实数m的取值范围
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】利用弧长公式直接求解.【详解】嫦娥五号绕月飞行半径为400+1738=2138,所以嫦娥五号绕月每旋转弧度,飞过的路程约为(千米).故选:D2、C【解析】由题知,故,进而得答案.【详解】因为是锐角,所以,所以,满足小于180°的正角.其中D选项不包括,故错误.故选:C3、B【解析】根据“囧函数”的定义结合反比例函数的性质即可判断①,根据复合函数的单调性即可②,根据奇偶性的定义即可判断③,根据零点的定义及反比例函数的性质即可判断④,数形结合即可判断⑤.【详解】解:由题设可知函数的函数值不会取到0,故命题①是错误的;当时,函数是单调递增函数,故“囧函数”在上单调递减,因此命题②是错误的;函数的定义域为,因为,所以函数是偶函数,因此其图象关于轴对称,命题③是真命题;因当时函数恒不为零,即没有零点,故命题④是错误的;作出的大致图象,如图,在四个象限都有图象,故直线与函数的图象至少有一个交点,因此命题⑤也是真命题综上命题③⑤是正确的,其它都是错误的.故选:B4、B【解析】解:由已知中的三视图可得:该几何体是一个以俯视图为底面的斜四棱柱,其底面面积为:3×6=18,前后侧面的面积为:3×6×2=36,左右侧面的面积为:,故棱柱的表面积为:故选B点睛:本题考查知识点是由三视图,求体积和表面积,根据已知的三视图,判断几何体的形状是解答的关键,由三视图判断空间几何体(包括多面体、旋转体和组合体)的结构特征是高考中的热点问题.5、D【解析】由图可知,,排除选项,由,排除选项,故选.6、D【解析】∵α∈,∴2α∈(0,π).∵cosα=,∴cos2α=2cos2α-1=-,∴sin2α=,而α,β∈,∴α+β∈(0,π),∴sin(α+β)=,∴cos(α-β)=cos[2α-(α+β)]=cos2αcos(α+β)+sin2αsin(α+β)==.7、C【解析】函数的定义域为所以函数为奇函数;函数是非奇非偶函数;函数的图象关于y轴对称,所以该函数是偶函数;函数的对称轴方程为x=−1,抛物线不关于y轴对称,所以该函数不是偶函数.故选C.8、D【解析】利用辅助角公式化简的解析式,再利用正弦型函数的图象变换规律,正弦函数的图象的对称性,求得的值【详解】,(其中,),将图象向右平移个单位长度得到函数的图象,得到,∴,,解得,故选D.9、A【解析】汽车启动加速过程,随时间增加路程增加的越来越快,汉使图像是凹形,然后匀速运动,路程是均匀增加即函数图像是直线,最后减速并停止,其路程仍在增加,只是增加的越来越慢即函数图像是凸形.故选A考点:函数图像的特征10、D【解析】根据线面的位置关系可判断A;举反例判断B、C;由面面垂直的判定定理可判断D,进而可得正确选项.详解】对于A:若,,则或,故选项A不正确;对于B:如图平面为平面,平面为平面,直线为,直线为,满足,,,但与相交,故选项B不正确;对于C:如图在正方体中,平面为平面,平面为平面,直线为,直线为,满足,,,则,故选项C不正确;对于D:若,,可得或,若,因为,由面面垂直的判定定理可得;若,可过作平面与相交,则交线在平面内,且交线与平行,由可得交线与垂直,由面面垂直的判定定理可得,故选项D正确;故选:D.二、填空题:本大题共6小题,每小题5分,共30分。11、②【解析】对于①,,则,位置关系不确定,的位置关系不能确定;对于②,由垂直于同一平面的两直线平行知,结论正确;对于③,,则或;对于④,,则或,故答案为②.【方法点晴】本题主要考查线面平行的判定与性质、面面垂直的性质及线面垂直的判定,属于难题.空间直线、平面平行或垂直等位置关系命题的真假判断,常采用画图(尤其是画长方体)、现实实物判断法(如墙角、桌面等)、排除筛选法等;另外,若原命题不太容易判断真假,可以考虑它的逆否命题,判断它的逆否命题真假,原命题与逆否命题等价.12、1;【解析】13、【解析】先代入点的坐标求出幂函数,再计算即可.【详解】幂函数的图象经过点,设,,解得故,所以.故答案为:.14、【解析】根据的取值进行分类讨论,得到等价函数后分别求出其零点,然后可得所求集合【详解】①当x>0时,函数f(x)=sgn(x)﹣2x=1﹣2x,令1﹣2x=0,得x=,即当x>0时,函数f(x)的零点是;②当x=0时,函数f(x)=0,故函数f(x)的零点是0;③当x<0时,函数f(x)=﹣1﹣2x,令﹣1﹣2x=0,得x=,即当x<0时,函数f(x)的零点是综上可得函数f(x)=sgn(x)﹣x的零点的集合为:故答案为【点睛】本题主要考查函数零点的求法,解题的关键是根据题意得到函数的解析式,考查转化思想、分类讨论思想,是基础题15、【解析】由题意根据数形结合,只要,并且对称轴在之间,,解不等式组即可【详解】由题意,要使函数区间上有两个零点,只要,即,解得,故答案为【点睛】本题主要考查了二次函数的性质,函数零点的分布,关键是结合二次函数图象等价得到不等式组,常见的形式有考虑端点值处函数值的符号,对称轴与所给区间的关系,对称轴处函数值的符号等,属于中档题.16、【解析】以边长为2的正三角形的一条高所在直线为旋转轴,将该三角形旋转一周,所得几何体为圆锥,圆锥的底面半径,母线长,该几何体的表面积为:.故答案为三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)由函数的定义域为,得到恒成立,即恒成立,分类讨论,即可求解.(2)根据题意,转化为,利用单调性的定义,得到在R上单调递增,求得,得出恒成立,得出恒成立,分类讨论,即可求解.【详解】(1)由函数定义域为,即恒成立,即恒成立,当时,恒成立,因为,所以,即;当时,显然成立;当时,恒成立,因为,所以,综上可得,实数的取值范围.(2)由对任意,存在,使得,可得,设,因为,所以,同理可得,所以,所以,可得,即,所以在R上单调递增,所以,则,即恒成立,因为,所以恒成立,当时,恒成立,因为,当且仅当时等号成立,所以,所以,解得,所以;当时,显然成立;当时,恒成立,没有最大值,不合题意,综上,实数的取值范围.【点睛】利用函数求解方程的根的个数或研究不等式问题的策略:1、利用函数的图象研究方程的根的个数:当方程与基本性质有关时,可以通过函数图象来研究方程的根,方程的根就是函数与轴的交点的横坐标,方程的根据就是函数和图象的交点的横坐标;2、利用函数研究不等式:当不等式问题不能用代数法求解但其与函数有关时,常将不等式问题转化为两函数图象的上、下关系问题,从而利用数形结合求解.18、(1)cos,(2)【解析】(1)通过三角恒等式先求,再求即可;(2)先通过诱导公式进行化简,再将,的值代入即可得结果.【小问1详解】因为sin=,所以,且是第二象限角,所以cos=,从而【小问2详解】原式=19、(1)(2)【解析】(1)根据表格提供的数据画出函数图象,求出、和、的值,写出的解析式即可;(2)由函数的最小正周期求出的值,再利用换元法,令,结合函数的图象求出方程恰有两个不同的解时的取值范围【详解】解:(1)绘制函数图象如图所示:设的最小正周期为,得.由得又解得,令,即,,据此可得:,又,令可得所以函数的解析式为(2)因为函数的周期为,又,所以令,因为,所以在上有两个不同的解,等价于函数与的图象有两个不同的交点,,所以方程在时恰好有两个不同的解的条件是,即实数的取值范围是【点睛】本题考查了三角函数的图象与性质的应用问题,也考查了函数与方程的应用问题,属于中档题20、(1),(2)20,【解析】(1)过点C作,表示出,,即可写出梯形周长y和的函数解析式;(2)令,结合二次函数求出y的最大值,求出此时的,再计算梯形面积即可.【小问1详解】由题意得.半圆形钢板半径为4,则,过点C作.在和中,有,,.在中,因为,为等腰三角形,故,所以,.,.【小
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 房屋拆迁劳务合同范例
- 工商有备案合同范例
- 房屋委托合同范例
- Unit-1-Cultural-Heritage-词汇知识点背诵记忆
- 桥梁燃气管线保护方案
- 水表配件验收水电班组施工合同
- 药品广告审查制度
- 广播电视塔防火门招标书
- 船舶公司电梯施工协议
- 城市防洪工程合同分析表
- 第三届全国大学生未来农业律师大赛试题
- 2024年居家养老服务协议
- 2024年份IDC数据中心租赁协议
- 天津市和平区2024-2025学年七年级上期中考试数学试题
- 食材配送服务方案投标方案(技术方案)
- 大学生生涯发展展示
- 乳腺结节课件
- 班前安全技术交底记录表
- 2023年大学生《思想道德与法治》考试题库附答案(712题)
- 国家开放大学《监督学》形考任务1-4参考答案
- 理正岩土6.0隧道衬砌说明
评论
0/150
提交评论