版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年湖南省衡阳市衡阳县六中数学高一上期末调研模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数(其中)的图象如图所示,则函数的图像是()A. B.C. D.2.“函数在区间I上严格单调”是“函数在I上有反函数”的()A.充分非必要条件 B.必要非充分条件C.充分必要条件 D.既非充分又非必要条件3.已知角的顶点与平面直角坐标系的原点重合,始边与x轴的正半轴重合,终边经过点,若,则的值为()A. B.C. D.4.在平面直角坐标系中,直线的斜率是()A. B.C. D.5.在平行四边形中,设,,,,下列式子中不正确是()A. B.C. D.6.函数f(x)=x-的图象关于()Ay轴对称 B.原点对称C.直线对称 D.直线对称7.四名学生按任意次序站成一排,若不相邻的概率是()A. B.C. D.8.设,,,则a,b,c的大小关系为()A. B.C. D.9.若函数在上的最大值为4,则的取值范围为()A. B.C. D.10.已知直线:与直线:,则()A.,平行 B.,垂直C.,关于轴对称 D.,关于轴对称二、填空题:本大题共6小题,每小题5分,共30分。11.已知幂函数的图象关于轴对称,且在上单调递减,则满足的的取值范围为________.12.如图,、、、分别是三棱柱的顶点或所在棱的中点,则表示直线与是异面直线的图形有______.13.已知,若是的充分不必要条件,则的取值范围为______14.不等式的解集是___________.(用区间表示)15.函数的定义域是____________.16.若,则的取值范围为___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设在区间单调,且都有(1)求的解析式;(2)用“五点法”作出在的简图,并写出函数在的所有零点之和.18.已知函数,,其中(1)写出的单调区间(无需证明);(2)求在区间上的最小值;(3)若对任意,均存在,使得成立,求实数的取值范围19.设函数当时,求函数的零点;若,当时,求x的取值范围20.已知函数.(1)用“五点法”做出函数在上的简图;(2)若方程在上有两个实根,求a的取值范围.21.已知,且是第________象限角.从①一,②二,③三,④四,这四个选项中选择一个你认为恰当的选项填在上面的横线上,并根据你的选择,解答以下问题:(1)求的值;(2)化简求值:.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】根据二次函数图象上特殊点的正负性,结合指数型函数的性质进行判断即可.【详解】由图象可知:,因为,所以由可得:,由可得:,由可得:,因此有,所以函数是减函数,,所以选项A符合,故选:A2、A【解析】“函数在区间上单调”“函数在上有反函数”,反之不成立.即可判断出结论【详解】解:“函数在区间上严格单调”“函数在上有反函数”,下面给出证明:若“函数在区间上严格单调”,设函数在区间上的值域为,任取,如果在中存在两个或多于两个的值与之对应,设其中的某两个为,且,即,但因为,所以(或)由函数在区间上单调知:,(或),这与矛盾.因此在中有唯一的值与之对应.由反函数的定义知:函数在区间上存在反函数反之“函数在上有反函数”则不一定有“函数在区间上单调”,例如:函数,就存在反函数:易知函数在区间上并不单调综上,“函数在区间上严格单调”是“函数在上有反函数”的充分不必要条件.故选:A3、C【解析】根据终边经过点,且,利用三角函数的定义求解.【详解】因为角终边经过点,且,所以,解得,故选:C4、A【解析】将直线转化成斜截式方程,即得得出斜率.【详解】解:由题得,原式可化为,斜率.故选:A.5、B【解析】根据向量加减法计算,再进行判断选择.【详解】;;;故选:B【点睛】本题考查向量加减法,考查基本分析求解能力,属基础题.6、B【解析】函数f(x)=x-则f(-x)=-x+=-f(x),由奇函数的定义即可得出结论.【详解】函数f(x)=x-则f(-x)=-x+=-f(x),所以函数f(x)奇函数,所以图象关于原点对称,故选B.【点睛】本题考查了函数的对称性,根据函数解析式特点得出f(-x)=-f(x)即可得出函数为奇函数,属于基础题.7、B【解析】利用捆绑法求出相邻的概率即可求解.【详解】四名学生按任意次序站成一排共有,相邻的站法有,相邻的的概率,故不相邻的概率是.故选:B【点睛】本题考查了排列数以及捆绑法在排列中的应用,同时考查了古典概型的概率计算公式.8、A【解析】根据指数函数和对数函数的单调性得出的范围,然后即可得出的大小关系.【详解】由题意知,,即,,即,,又,即,∴故选:A9、C【解析】先分别探究函数与的单调性,再求的最大值.【详解】因为在上单调递增,在上单调递增.而,,所以的取值范围为.【点睛】本题主要考查分段函数的最值以及指数函数,对数函数的单调性,属于中档题.10、D【解析】根据题意,可知两条直线都经过轴上的同一点,且两条直线的斜率互为相反数,即可得两条直线的对称关系.【详解】因为,都经过轴上的点,且斜率互为相反数,所以,关于轴对称.故选:D【点睛】本题考查了两条直线的位置关系,关于轴对称的直线方程特征,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据幂函数的单调性和奇偶性得到,代入不等式得到,根据函数的单调性解得答案.【详解】幂函数在上单调递减,故,解得.,故,,.当时,不关于轴对称,舍去;当时,关于轴对称,满足;当时,不关于轴对称,舍去;故,,函数在和上单调递减,故或或,解得或.故答案为:12、②④【解析】图①中,直线,图②中面,图③中,图④中,面【详解】解:根据题意,在①中,且,则四边形是平行四边形,有,不是异面直线;图②中,、、三点共面,但面,因此直线与异面;在③中,、分别是所在棱的中点,所以且,故,必相交,不是异面直线;图④中,、、共面,但面,与异面所以图②④中与异面故答案为:②④.13、【解析】根据不等式的解法求出的等价条件,结合充分不必要条件的定义建立不等式关系即可【详解】由得得或,由得或,得或,若是的充分不必要条件,则即得,又,则,即实数的取值范围是,故填:【点睛】本题主要考查充分条件和必要条件的应用,求出不等式的等价条件结合充分条件和必要条件的定义进行转化是解决本题的关键,为基础题14、【解析】根据一元二次不等式解法求不等式解集.【详解】由题设,,即,所以不等式解集为.故答案为:15、【解析】利用对数函数的定义域列出不等式组即可求解.【详解】由题意可得,解得,所以函数的定义域为.故答案为:16、【解析】一元二次不等式,对任意的实数都成立,与x轴最多有一个交点;由对勾函数的单调性可以求出m的范围.【详解】由,得.由题意可得,,即.因为,所以,故.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)图象见解析,所有零点之和为【解析】(1)依题意在时取最大值,在时取最小值,再根据函数在单调,即可得到,即可求出,再根据函数在取得最大值求出,即可求出函数解析式;(2)列出表格画出函数图象,再根据函数的对称性求出零点和;【小问1详解】解:依题意在时取最大值,在时取最小值,又函数在区间单调,所以,即,又,所以,由得,即,又因为,所以,,所以.【小问2详解】解:列表如下0001所以函数图象如下所示:由图知的一条对称轴为有两个实数根,记为,则由对称性知,所以所有实根之和为.18、(1)的单调递增区间是,单调递减区间是(2)(3)【解析】(1)利用去掉绝对值及一次函数的性质即可求解;(2)根据(1)的结论,利用单调性与最值的关系即可求解;(3)根据已知条件将问题转化为,再利用函数的单调性与最值的关系,分情况讨论即可求解.【小问1详解】由,得,所以函数的单调递增区间是,单调递减区间是,【小问2详解】由(1)知,函数的单调递增区间是,单调递减区间是,当,即时,当时,函数取得最小值为,当,即时,当时,函数取得最小值为,综上所述,函数在区间上的最小值为.【小问3详解】因为对任意,均存在,使得成立等价于,,.而当时,,故必有由第(2)小题可知,,且,所以,①当时,∴,可得,②当时,∴,可得,③当时,∴或,可得,综上所述,实数的取值范围为19、(1);(2).【解析】由分段函数解析式可得时无零点;讨论,,解方程即可得到所求零点;求得的解析式,讨论,,解不等式组即可得到所求范围【详解】解:函数,可得时,无解;当时,无解;当时,即,可得;综上可得时,无零点;时,零点为;,,当时,即有或,可得或且,综上可得x的范围是【点睛】本题考查分段函数、函数零点和解不等式等知识,属于中档题20、(1)答案见解析(2)【解析】(1)根据“五点法”作图法,列表、描点、作图,即可得到结果;(2)将原问题转化为与在上有两个不同的交点,作出函数在的图象,由数形结合即可得到结果.【小问1详解】解:列表:x01131作图:【小问2详解】解:若方程在上有两个实根,则与在上有
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 江苏省泰州市姜堰区2024-2025学年七年级上学期期中生物试题(含答案)
- 2024年度云南省高校教师资格证之高等教育法规综合练习试卷B卷附答案
- 安徽省合肥市2024-2025学年九年级上学期期中物理模拟试卷二(含答案)
- 阜阳师范大学《战略管理》2023-2024学年第一学期期末试卷
- 阜阳师范大学《幼儿歌曲弹唱二》2022-2023学年第一学期期末试卷
- 阜阳师范大学《投资学专业导论》2021-2022学年第一学期期末试卷
- 2023年高密度聚乙烯土工膜投资申请报告
- 福建师范大学协和学院《跨境电子商务理论与实务》2021-2022学年第一学期期末试卷
- 福建师范大学《运动技能学习与控制》2022-2023学年第一学期期末试卷
- 2024年二级建造师-法规-学霸笔记
- 心理减压及放松训练
- 如何搞定你的客户-
- 宁夏特色美食文化介绍推介PPT图文课件
- 学生对学校满意度评价表
- 压缩机辅助系统试运
- 环磷酰胺原料药相关项目投资计划书
- 部编版语文四年级上册第五单元【集体备课】
- 职高新思政-第五课:推动高质量发展
- 天然气超声波脱水技术
- 机械制造课程设计-《机械制造工艺学》课程设计
- 疲劳驾驶安全教育内容
评论
0/150
提交评论