2023-2024学年福建省罗源一中高一数学第一学期期末质量跟踪监视试题含解析_第1页
2023-2024学年福建省罗源一中高一数学第一学期期末质量跟踪监视试题含解析_第2页
2023-2024学年福建省罗源一中高一数学第一学期期末质量跟踪监视试题含解析_第3页
2023-2024学年福建省罗源一中高一数学第一学期期末质量跟踪监视试题含解析_第4页
2023-2024学年福建省罗源一中高一数学第一学期期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年福建省罗源一中高一数学第一学期期末质量跟踪监视试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若,求()A. B.C. D.2.已知函数在上有两个零点,则的取值范围为()A. B.C. D.3.函数f(x)=lnx﹣1的零点所在的区间是A(1,2) B.(2,3)C.(3,4) D.(4,5)4.在空间坐标系中,点关于轴的对称点为()A. B.C. D.5.函数的图象形如汉字“囧”,故称其为“囧函数”下列命题:①“囧函数”的值域为R;②“囧函数”在上单调递增;③“囧函数”的图象关于轴对称;④“囧函数”有两个零点;⑤“囧函数”的图象与直线至少有一个交点.正确命题的个数为A1 B.2C.3 D.46.已知向量,且,则A. B.C. D.7.已知,并且是终边上一点,那么的值等于A. B.C. D.8.已知命题,,则命题否定为()A., B.,C., D.,9.函数f(x)=sin(x+)+cos(x-)的最大值是()A. B.C.1 D.10.已知全集,,,则等于()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,若a、b、c互不相等,且,则abc的取值范围是______12.如图,,,是三个边长为1的等边三角形,且有一条边在同一直线上,边上有2个不同的点,则__________13.计算:=_______________.14.已知函数且关于的方程有四个不等实根,写出一个满足条件的值________15.设则__________.16.已知fx是定义域为R的奇函数,且当x>0时,fx=ln三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设,为两个不共线的向量,若.(1)若与共线,求实数的值;(2)若为互相垂直的单位向量,且,求实数的值.18.已知函数,其中(1)当时,求不等式的解集;(2)若关于x的方程的解集中恰好有一个元素,求m的取值范围;(3)设,若对任意,函数在区间上的最大值与最小值的差不超过1,求m的取值范围19.大西洋鲑鱼每年都要逆流而上,游回产地产卵,研究鲑鱼的科学家发现鲑鱼的游速(单位:)与其耗氧量单位数之间的关系可以表示为函数,其中为常数,已知一条鲑鱼在静止时的耗氧量为100个单位;而当它的游速为时,其耗氧量为2700个单位.(1)求出游速与其耗氧量单位数之间的函数解析式;(2)求当一条鲑鱼的游速不高于时,其耗氧量至多需要多少个单位?20.已知函数是偶函数(其中为自然对数的底数,…)(1)求的值;(2)若方程在区间上有实数根,求实数的取值范围21.已知向量、、是同一平面内的三个向量,且.(1)若,且,求;(2)若,且与互相垂直,求.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】根据,求得,再利用指数幂及对数的运算即可得出答案.【详解】解:因为,所以,所以.故选:A.2、B【解析】先化简,再令,求出范围,根据在上有两个零点,作图分析,求得的取值范围.【详解】,由,又,则可令,又函数在上有两个零点,作图分析:则,解得.故选:B.【点睛】本题考查了辅助角公式,换元法的运用,三角函数的图象与性质,属于中档题.3、B【解析】∵,在递增,而,∴函数的零点所在的区间是,故选B.4、C【解析】两点关于轴对称,则纵坐标相同,横坐标互为相反数,竖坐标互为相反数,由此可直接得出结果.【详解】解:两点关于轴对称,则纵坐标相同,横坐标互为相反数,竖坐标互为相反数,所以点关于轴的对称点的坐标是.故选:C.5、B【解析】根据“囧函数”的定义结合反比例函数的性质即可判断①,根据复合函数的单调性即可②,根据奇偶性的定义即可判断③,根据零点的定义及反比例函数的性质即可判断④,数形结合即可判断⑤.【详解】解:由题设可知函数的函数值不会取到0,故命题①是错误的;当时,函数是单调递增函数,故“囧函数”在上单调递减,因此命题②是错误的;函数的定义域为,因为,所以函数是偶函数,因此其图象关于轴对称,命题③是真命题;因当时函数恒不为零,即没有零点,故命题④是错误的;作出的大致图象,如图,在四个象限都有图象,故直线与函数的图象至少有一个交点,因此命题⑤也是真命题综上命题③⑤是正确的,其它都是错误的.故选:B6、B【解析】由已知得,因为,所以,即,解得.选B7、A【解析】由题意得:,选A.8、D【解析】根据全称命题的否定是特称命题形式,直接选出答案.【详解】命题,,是全称命题,故其否定命题为:,,故选:D.9、A【解析】先利用三角恒等变化公式将函数化成形式,然后直接得出最值.【详解】整理得,利用辅助角公式得,所以函数的最大值为,故选A.【点睛】三角函数求最值或者求值域一定要先将函数化成的形函数.10、D【解析】利用补集和并集的定义即可得解.【详解】,,,,,.故选:D.【点睛】本题主要考查集合的基本运算,熟练掌握补集和并集的定义是解决本题的关键,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】画出函数的图象,根据互不相等,且,我们令,我们易根据对数的运算性质,及c的取值范围得到abc的取值范围,即可求解【详解】由函数函数,可得函数的图象,如图所示:若a,b,c互不相等,且,令,则,,故,故答案为【点睛】本题主要考查了对数函数图象与性质的综合应用,其中画出函数图象,利用图象的直观性,数形结合进行解答是解决此类问题的关键,着重考查了数形结合思想,以及分析问题和解答问题的能力,属于中档试题12、9【解析】以为原点建立平面直角坐标系,依题意可设三个点坐标分别为,故.【点睛】本题主要考查向量的加法、向量的数量积运算;考查平面几何坐标法的思想方法.由于题目给定三个全等的三角形,而的位置不确定,故考虑用坐标法来解决.在利用坐标法解题时,首先要选择合适的位置建立平面直角坐标系,建立后用坐标表示点的位置,最后根据题目的要求计算结果.13、【解析】考点:两角和正切公式点评:本题主要考查两角和的正切公式变形的运用,抓住和角是特殊角,是解题的关键.14、(在之间都可以).【解析】画出函数的图象,结合图象可得答案.【详解】如图,当时,,当且仅当时等号成立,当时,,要使方程有四个不等实根,只需使即可,故答案为:(在之间都可以).15、【解析】先求,再求的值.【详解】由分段函数可知,.故答案为:【点睛】本题考查分段函数求值,属于基础题型.16、1【解析】首先根据x>0时fx的解析式求出f1【详解】因为当x>0时,fx=ln又因为fx是定义域为R的奇函数,所以f故答案为:1.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)-;(2)2.【解析】(1)若与共线,则存在实数,使得,根据,为两个不共线的向量可列出关于k和λ的方程组,求解方程组即可;(2)若,则,代入,根据向量数量积运算律即可计算.小问1详解】若与共线,则存在实数,使得,即,则且,解得;小问2详解】由题可知,,,若,则,变形可得:,即.18、(1);(2);(3).【解析】(1)当时,解对数不等式即可(2)根据对数的运算法则进行化简,转化为一元二次方程,讨论的取值范围进行求解即可(3)根据条件得到恒成立,利用二次函数的性质求最值即求.【小问1详解】由,得,即∴且,解得【小问2详解】由题得,即,①当时,,经检验,满足题意②当时,(ⅰ)当时,,经检验,不满足题意(ⅱ)当且时,,,是原方程的解当且仅当,即;是原方程的解当且仅当,即因为解集中恰有一个元素则满足题意的m不存在综上,m的取值范围为【小问3详解】当时,,所以在上单调递减∴函数在区间上的最大值与最小值分别为,即,对任意成立因为,所以函数在区间上单调递增,当时,y有最小值,由,得故m的取值范围为19、(1),;(2)24300【解析】:(1)由,可得,.(2)由题,解得:,故其耗氧量至多需要24300个单位.试题解析:(1)由题意,得,解得:,.∴游速与其耗氧量单位数之间的函数解析式为.(2)由题意,有,即,∴由对数函数的单调性,有,解得:,∴当一条鲑鱼的游速不高于时,其耗氧量至多需要24300个单位.点晴:解决函数模型应用的解答题20、(1);(2)【解析】(1)由偶函数的定义可得恒成立,即可求出值;(2)由题意可分离参数得出有解,求出的值域即可.【详解】(1)是偶函数,恒成立,,解得;(2)由(1)知,由得,令,当时,,则,故时,方程在区间上有实数根,故的取值范围为.【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论