2023-2024学年辽宁省沈阳市第1高一数学第一学期期末调研试题含解析_第1页
2023-2024学年辽宁省沈阳市第1高一数学第一学期期末调研试题含解析_第2页
2023-2024学年辽宁省沈阳市第1高一数学第一学期期末调研试题含解析_第3页
2023-2024学年辽宁省沈阳市第1高一数学第一学期期末调研试题含解析_第4页
2023-2024学年辽宁省沈阳市第1高一数学第一学期期末调研试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年辽宁省沈阳市第1高一数学第一学期期末调研试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.已知函数对任意实数都满足,若,则A.-1 B.0C.1 D.22.已知关于的方程()的根为负数,则的取值范围是()A. B.C. D.3.已知函数与在下列区间内同为单调递增的是()A. B.C. D.4.已知集合,则()A B.C. D.5.下列函数中既是奇函数,又是其定义域上的增函数的是A. B.C. D.6.设是定义在上的奇函数,且当时,,则()A. B.C. D.7.设,则下列不等式中不成立的是()A. B.C. D.8.边长为的正四面体的表面积是A. B.C. D.9.方程的实数根大约所在的区间是A. B.C. D.10.在平面直角坐标系中,大小为的角始边与轴非负半轴重合,顶点与原点O重合,其终边与圆心在原点,半径为3的圆相交于一点P,点Q坐标为,则的面积为()A. B.C. D.2二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.若“”是“”的必要不充分条件,则实数的取值范围为___________.12.幂函数y=f(x)的图象过点(2,8),则13.定义:关于的两个不等式和的解集分别为和,则称这两个不等式为相连不等式.如果不等式与不等式为相连不等式,且,则_________14.奇函数f(x)是定义在[-2,2]上的减函数,若f(2a+1)+f(4a-3)>0,则实数a的取值范围是_______15.计算:()0+_____三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.已知,求值:(1);(2)2.17.已知直线,直线经过点,且(1)求直线的方程;(2)记与轴相交于点,与轴相交于点,与相交于点,求的面积18.如图,在三棱锥P﹣ABC中,PA⊥平面ABC,CA=CB,点D,E分别为AB,AC的中点.求证:(1)DE∥平面PBC;(2)CD⊥平面PAB19.已知cosα=-35,且(1)求sinα(2)求sinα+6πcos20.已知函数,(1)求不等式的解集;(2)若有两个不同的实数根,求a的取值范围21.已知向量,不共线,,(1)若,求k的值,并判断,是否同向;(2)若,与夹角为,当为何值时,

参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、A【解析】由题意首先确定函数的周期性,然后结合所给的关系式确定的值即可.【详解】由可得,据此可得:,即函数是周期为2的函数,且,据此可知.本题选择A选项.【点睛】本题主要考查函数的周期性及其应用等知识,意在考查学生的转化能力和计算求解能力.2、D【解析】分类参数,将问题转化为求函数在的值域,再利用指数函数的性质进行求解.【详解】将化为,因为关于的方程()的根为负数,所以的取值范围是在的值域,当时,,则,即的取值范围是.故选:D.3、D【解析】根据正余弦函数的单调性,即可得到结果.【详解】由正弦函数的单调性可知,函数在上单调递增;由余弦函数的单调性可知,函数在上单调递增;所以函数与在下列区间内同为单调递增的是.故选:D.4、D【解析】利用元素与集合的关系判断即可.【详解】由集合,即集合是所有的偶数构成的集合.所以,,,故选:D5、C【解析】对于A,函数的偶函数,不符合,故错;对于B,定义域为,是非奇非偶函数,故错;对于C,定义域R,是奇函数,且是增函数,正确;对于D,是奇函数,但是是减函数,故错考点:本题考查函数的奇偶性和单调性点评:解决本题的关键是掌握初等函数的奇偶性和单调性6、D【解析】根据奇函数的性质求函数值即可.【详解】故选:D7、B【解析】对于A,C,D利用不等式的性质分析即可,对于B举反例即可【详解】对于A,因为,所以,所以,即,所以A成立;对于B,若,,则,,此时,所以B不成立;对于C,因为,所以,所以C成立;对于D,因为,所以,则,所以D成立,故选:B.【点睛】本题考查不等式的性质的应用,属于基础题.8、D【解析】∵边长为a的正四面体的表面为4个边长为a正三角形,∴表面积为:4×a=a2,故选D9、C【解析】方程的根转化为函数的零点,判断函数的连续性以及单调性,然后利用零点存在性定理推出结果即可【详解】方程的根就是的零点,函数是连续函数,是增函数,又,,所以,方程根属于故选C【点睛】本题考查函数零点存在性定理的应用,考查计算能力10、B【解析】根据题意可得、,结合三角形的面积公式计算即可.【详解】由题意知,,,所以.故选:B二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、##【解析】由题意,根据必要不充分条件可得⫋,从而建立不等关系即可求解.【详解】解:不等式的解集为,不等式的解集为,因为“”是“”的必要不充分条件,所以⫋,所以,解得,所以实数的取值范围为,故答案为:.12、64【解析】由幂函数y=f(x)=xα的图象过点(2,8)【详解】∵幂函数y=f(x)=xα的图象过点∴2α=8∴f(x)=x∴f(4)=故答案为64【点睛】本题考查幂函数概念,考查运算求解能力,是基础题13、##【解析】二次不等式解的边界值即为与之对应的二次方程的根,利用根与系数的关系可得,整理得,结合范围判定求值【详解】设的解集为,则的解集为由二次方程根与系数的关系可得∴,即∴,即又∵,则∴,即故答案为:14、[【解析】利用函数的奇偶性、单调性去掉不等式中的符号“f”,可转化为具体不等式,注意函数定义域【详解】解:由f(2a+1)+f(4a-3)>0得f(2a+1)>-f(4a-3),又f(x)为奇函数,得-f(4a-3)=f(3-4a),∴f(2a+1)>f(3-4a),又f(x)是定义在[-2,2]上的减函数,∴解得:1即a∈故答案为:1【点睛】本题考查函数的奇偶性、单调性的综合应用,考查转化思想,解决本题的关键是利用性质去掉符号“f”15、【解析】根据根式、指数和对数运算化简所求表达式.【详解】依题意,原式.故答案为:【点睛】本小题主要考查根式、指数和对数运算,考查化归与转化的数学思想方法,属于基础题.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1);(2).【解析】(1)根据已知可求出,将所求的式子化弦为切,即可求解;(2)引进分式,利用“1”的变化,将所求式子化为的齐次分式,化弦为切,即可求解.【详解】.(1);(2)2.【点睛】关键点睛:解决问题二的关键在于利用“1”的变化,将所求式子化为的齐次分式,化弦为切.17、(1);(2)【解析】(1)根据两条直线垂直的斜率关系可得直线的斜率,代入求得截距,即可求得直线的方程.(2)根据题意分别求得的坐标,可得的长,由的纵坐标即可求得的面积【详解】(1)由题意,则两条直线的斜率之积为即直线的斜率为因为,所以可设将代入上式,解得即(2)在直线中,令,得,即在直线:中,令,得,即解方程组,得,,即则底边的长为,边上的高为故【点睛】本题考查了直线与直线垂直的斜率关系,直线与轴交点坐标,直线的交点坐标求法,属于基础题.18、(1)证明见解析;(2)证明见解析.【解析】(1)由点D、E分别为AB、AC中点得知DE∥BC,由此证得DE∥平面PBC;(2)要证CD⊥平面PAB,只需证明垂直平面内的两条相交直线与即可.【详解】(1)因为点D、E分别为AB、AC中点,所以DE∥BC又因为DE⊄平面PBC,BC⊂平面PBC,所以DE∥平面PBC(2)因为CA=CB,点D为AB中点,所以CD⊥AB因为PA⊥平面ABC,CD⊂平面ABC,所以PA⊥CD又因为PA∩AB=A,所以CD⊥平面PAB【点睛】本题考查线面平行的证明,线面垂直的证明,属于基础题.垂直、平行关系证明中应用转化与化归思想的常见类型(1)证明线面、面面平行,需转化为证明线线平行;(2)证明线面垂直,需转化为证明线线垂直;(3)证明线线垂直,需转化为证明线面垂直.19、(1)4(2)-【解析】(1)根据三角函数的同角关系求得sinα=±(2)利用诱导公式将原式化简即可得出结果.【小问1详解】因为cosα=-35因为α是第二象限角,所以sinα=【小问2详解】sinα+6π20、(1)(2)【解析】(1)利用三角恒等变换公式将化到最简形式,确定,在这个范围内解三角不等式即可;(2)确定在上的最值,根据有两个不同的实数根,得到a应满足的条件,解得答案.【小问1详解】原式化简后得,由,则∴,可得,即,故不等式的解集为【小问2详解】在

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论