2023-2024学年江苏省田家炳中学高一数学第一学期期末监测试题含解析_第1页
2023-2024学年江苏省田家炳中学高一数学第一学期期末监测试题含解析_第2页
2023-2024学年江苏省田家炳中学高一数学第一学期期末监测试题含解析_第3页
2023-2024学年江苏省田家炳中学高一数学第一学期期末监测试题含解析_第4页
2023-2024学年江苏省田家炳中学高一数学第一学期期末监测试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年江苏省田家炳中学高一数学第一学期期末监测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(本大题共12小题,共60分)1.若函数且,则该函数过的定点为()A. B.C. D.2.已知,则下列结论中正确的是()A.的最大值为 B.在区间上单调递增C.的图象关于点对称 D.的最小正周期为3.已知函数在上是增函数,则实数的取值范围是()A. B.C. D.4.下列各式正确是A. B.C. D.5.直线l:ax+y﹣3a=0与曲线y有两个公共点,则实数a的取值范围是A.[,] B.(0,)C.[0,) D.(,0)6.已知两条直线,,且,则满足条件的值为A. B.C.-2 D.27.函数,则下列坐标表示的点一定在函数图像上的是A. B.C. D.8.设函数与的图象的交点为,则所在的区间为()A B.C. D.9.已知,,,,则,,的大小关系是()A. B.C. D.10.实数,,的大小关系正确的是()A. B.C. D.11.已知,,,则下列判断正确的是()A. B.C. D.12.函数的零点所在区间为()A.(0,) B.(,)C.(,1) D.(1,2)二、填空题(本大题共4小题,共20分)13.已知直线:,直线:,若,则__________14.已知,则__________.15.命题“”的否定是________________.16.已知是半径为,圆角为扇形,是扇形弧上的动点,是扇形的接矩形,则的最大值为________.三、解答题(本大题共6小题,共70分)17.已知函数(1)若函数在区间上有且仅有1个零点,求a的取值范围:(2)若函数在区间上的最大值为,求a的值18.如图,在三棱锥A­BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,F(E与A,D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.19.已知集合,(1)若,求实数a,b满足的条件;(2)若,求实数m的取值范围20.已知角α的终边经过点P.(1)求sinα的值;(2)求的值.21.已知是定义在上的偶函数,当时,(1)求;(2)求的解析式;(3)若,求实数a的取值范围22.已知,,且函数有奇偶性,求a,b的值

参考答案一、选择题(本大题共12小题,共60分)1、D【解析】根据指数函数的图像经过定点坐标是,利用平移可得到答案.【详解】因为指数函数的图像经过定点坐标是,函数图像向右平移个单位,再向上平移个单位,得到,函数的图像过的定点.故选:.【点睛】本题主要考查的是指数函数的图像和性质,考查学生对指数函数的理解,是基础题.2、B【解析】利用辅助角公式可得,根据正弦型函数最值、单调性、对称性和最小正周期的求法依次判断各个选项即可.【详解】;对于A,,A错误;对于B,当时,,由正弦函数在上单调递增可知:在上单调递增,B正确;对于C,当时,,则关于成轴对称,C错误;对于D,最小正周期,D错误.故选:B.3、A【解析】先考虑函数在上是增函数,再利用复合函数的单调性得出求解即可.【详解】设函数在上是增函数,解得故选:A【点睛】本题主要考查了由复合函数的单调性求参数范围,属于中档题.4、D【解析】对于,,,故,故错误;根据对数函数的单调性,可知错误故选5、C【解析】根据直线的点斜式方程可得直线过定点,曲线表示以为圆心,1为半径的半圆,作出图形,利用数形结合思想求出两个极限位置的斜率,即可得解.【详解】直线,即斜率为且过定点,曲线为以为圆心,1为半径的半圆,如图所示,当直线与半圆相切,为切点时(此时直线的倾斜角为钝角),圆心到直线的距离,,解得,当直线过原点时斜率,即,则直线与半圆有两个公共点时,实数的取值范围为:[0,),故选:C【点睛】本题主要考查圆的方程与性质,直线与圆的位置关系,考查了数形结合思想的应用,属于中档题.6、C【解析】根据两条直线l1:x+2ay﹣1=0,l2:x﹣4y=0,且l1∥l2,可得求得a=﹣2,故选C7、D【解析】因为函数,,所以,所以函数为偶函数,则、均在在函数图像上.故选D考点:函数的奇偶性8、C【解析】令,则,故的零点在内,因此两函数图象交点在内,故选C.【方法点睛】本题主要考查函数图象的交点与函数零点的关系、零点存在定理的应用,属于中档题.零点存在性定理的条件:(1)利用定理要求函数在区间上是连续不断的曲线;(2)要求;(3)要想判断零点个数还必须结合函数的图象与性质(如单调性、奇偶性).9、B【解析】根据题意不妨设,利用对数的运算性质化简x,利用指数函数的单调性求出y的取值范围,利用指数幂的运算求出z,进而得出结果.【详解】由,不妨设,则,,,所以,故选:B10、B【解析】根据指数函数、对数函数的单调性分别判断的取值范围,即可得结果.【详解】由对数函数的单调性可得,根据指数函数的单调性可得,即,,故选B.【点睛】本题主要考查对数函数的性质、指数函数的单调性及比较大小问题,属于中档题.解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间);二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用.11、C【解析】对数函数的单调性可比较、与的大小关系,由此可得出结论.【详解】,即.故选:C.12、B【解析】结合函数的单调性以及零点的存在性定理求得正确答案.【详解】在上递减,所以,在上递增,所以,是定义在上的减函数,,所以函数的零点在区间.故选:B二、填空题(本大题共4小题,共20分)13、1【解析】根据两直线垂直时,系数间满足的关系列方程即可求解.【详解】由题意可得:,解得:故答案为:【点睛】本题考查直线垂直的位置关系,考查理解辨析能力,属于基础题.14、3【解析】由同角三角函数商数关系及已知等式可得,应用诱导公式有,即可求值.【详解】由题设,,可得,∴.故答案为:315、.【解析】根据含有一个量词的命题的否定可得结果【详解】由含有一个量词的命题的否定可得,命题“”的否定为“”故答案为【点睛】对于含有量词的命题的否定要注意两点:一是要改换量词,把特称(全称)量词改为全称(特称)量词;二是把命题进行否定.本题考查特称命题的否定,属于简单题16、【解析】设,用表示出的长度,进而用三角函数表示出,结合辅助角公式即可求得最大值.【详解】设扇形的半径为,是扇形的接矩形则,所以则所以因为,所以所以当时,取得最大值故答案为:【点睛】本题考查了三角函数的应用,将边长转化为三角函数式,结合辅助角公式求得最值是常用方法,属于中档题.三、解答题(本大题共6小题,共70分)17、(1)(2)【解析】(1)结合函数图象,分四种情况进行讨论,求出a的取值范围;(2)对对称轴分类讨论,表达出不同范围下的最大值,列出方程,求出a的值.【小问1详解】①,解得:,此时,零点为,0,不合题意;②,解得:,此时,的零点为,1,不合题意;③,解得:,当时,的零点为,不合题意;当时,的零点为,不合题意;④,解得:,综上:a的取值范围是【小问2详解】对称轴为,当,即时,在上单调递减,,舍去;当,即时,,解得:或(舍去);当,即时,在上单调递增,,解得:(舍去);综上:18、(1)见解析(2)见解析【解析】(1)先由平面几何知识证明,再由线面平行判定定理得结论;(2)先由面面垂直性质定理得平面,则,再由AB⊥AD及线面垂直判定定理得AD⊥平面ABC,即可得AD⊥AC试题解析:证明:(1)在平面内,因为AB⊥AD,,所以.又因为平面ABC,平面ABC,所以EF∥平面ABC.(2)因为平面ABD⊥平面BCD,平面平面BCD=BD,平面BCD,,所以平面.因为平面,所以.又AB⊥AD,,平面ABC,平面ABC,所以AD⊥平面ABC,又因为AC平面ABC,所以AD⊥AC.点睛:垂直、平行关系证明中应用转化与化归思想的常见类型:(1)证明线面、面面平行,需转化为证明线线平行;(2)证明线面垂直,需转化为证明线线垂直;(3)证明线线垂直,需转化为证明线面垂直19、(1),;(2).【解析】(1)直接利用并集结果可得,;(2)根据可得,再对集合的解集情况进行分类讨论,即可得答案;【详解】解:(1);,∴,;(2),∴分情况讨论①,即时得;②若,即,中只有一个元素1符合题意;③若,即时得,∴∴综上【点睛】由集合间的基本关系求参数时,注意对可变的集合,分空集和不为空集两种情况.20、(1);(2)【解析】(1)由正弦函数定义计算;(2)由诱导公式,商数关系变形化简,由余弦函数定义计算代入可得.【详解】(1)因为点P,所以|OP|=1,sinα=.(2)由三角函数定义知cosα=,故所求式子的值为21、(1)2(2)(3)【解析】(1)根据偶函数这一性质将问题转化为求的值,再代入计算即可;(2)设,根据偶函数这一性质,求出另一部分的解析即可;(3)由(2)可知函数的单调性,结合单调性解不等式即可.【小问1详解】

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论