2023-2024学年江苏省淮安市数学高一上期末复习检测试题含解析_第1页
2023-2024学年江苏省淮安市数学高一上期末复习检测试题含解析_第2页
2023-2024学年江苏省淮安市数学高一上期末复习检测试题含解析_第3页
2023-2024学年江苏省淮安市数学高一上期末复习检测试题含解析_第4页
2023-2024学年江苏省淮安市数学高一上期末复习检测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年江苏省淮安市数学高一上期末复习检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.已知,,函数的零点为c,则()A.c<a<b B.a<c<bC.b<a<c D.a<b<c2.在《九章算术》中,将底面是直角三角形的直三棱柱称为“堑堵”.如图,网格纸上小正方形的边长为,粗实线画出的是某“堑堵”的三视图,则该“堑堵”的侧面积为()A.48 B.42C.36 D.303.函数的最小值为()A.1 B.C. D.4.幂函数y=f(x)的图象过点(4,2),则幂函数y=f(x)的图象是A. B.C. D.5.在平面直角坐标系中,设角的终边上任意一点的坐标是,它与原点的距离是,规定:比值叫做的正余混弦,记作.若,则()A. B.C. D.6.已知,则下列说法正确的是()A.有最大值0 B.有最小值为0C.有最大值为-4 D.有最小值为-47.设a,b均为实数,则“a>b”是“a3A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件8.函数f(x)=x2-3x-4的零点是()A. B.C. D.9.设,则()A.3 B.2C.1 D.-110.图(1)是某条公共汽车线路收支差额关于乘客量的图象,图(2)、(3)是由于目前本条路线亏损,公司有关人员提出的两种扭亏为盈的建议,则下列说法错误的是()A.图(1)的点的实际意义为:当乘客量为0时,亏损1个单位B.图(1)的射线上的点表示当乘客量小于3时将亏损,大于3时将盈利C.图(2)的建议为降低成本而保持票价不变D.图(3)的建议为降低成本的同时提高票价11.已知点,直线与线段相交,则直线的斜率的取值范围是()A.或 B.C. D.12.对于实数,“”是“”的A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.若函数,则______14.已知函数,则满足的实数的取值范围是__15.若f(x)是定义在R上的偶函数,当x≥0时,f(x)=,若方程f(x)=kx恰有3个不同的根,则实数k的取值范围是______16.已知,,且,若不等式恒成立,则实数m的取值范围为______三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.平面内给定三个向量,,(1)求满足的实数;(2)若,求实数.18.(1)写出下列两组诱导公式:①关于与的诱导公式;②关于与的诱导公式.(2)从上述①②两组诱导公式中任选一组,用任意角的三角函数定义给出证明.19.设,函数.(1)当时,写出的单调区间(不用写出求解过程);(2)若有两个零点,求的取值范围.20.如图,在四棱锥中,底面,,,,,是中点(Ⅰ)证明:平面;(Ⅱ)求二面角的正弦值21.已知(1)作出函数的图象,并写出单调区间;(2)若函数有两个零点,求实数的取值范围22.在平面直角坐标系中,已知角的顶点都与坐标原点重合,始边都与x轴的非负半轴重合,角的终边与单位圆交于点,角的终边在第二象限,与单位圆交于点Q,扇形的面积为.(1)求的值;(2)求的值.

参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、B【解析】由函数零点存在定理可得,又,,从而即可得答案.【详解】解:因为在上单调递减,且,,所以的零点所在区间为,即.又因为,,所以a<c<b故选:B.2、C【解析】由三视图可知该“堑堵”的高为,其底面是直角边为,斜边为的三角形,从而可求出其侧面积.【详解】解:由三视图易得该“堑堵”的高为,其底面是直角边为,斜边为的三角形,故其侧面积为.故选:C.3、D【解析】根据对数的运算法则,化简可得,分析即可得答案.【详解】由题意得,当时,的最小值为.故选:D4、C【解析】设出函数的解析式,根据幂函数y=f(x)的图象过点(4,2),构造方程求出指数的值,再结合函数的解析式研究其性质即可得到图象【详解】设幂函数的解析式为y=xa,∵幂函数y=f(x)的图象过点(4,2),∴2=4a,解得a=∴,其定义域为[0,+∞),且是增函数,当0<x<1时,其图象在直线y=x的上方.对照选项故选C【点睛】本题考查的知识点是函数解析式的求解及幂函数图象及其与指数的关系,其中对于已经知道函数类型求解析式的问题,要使用待定系数法5、D【解析】由可得出,根据题意得出,结合可得出关于和的方程组,解出这两个量,然后利用商数关系可求出的值.【详解】,则,由正余混弦的定义可得.则有,解得,因此,.故选:D.【点睛】本题考查三角函数的新定义,涉及同角三角函数基本关系的应用,根据题意建立方程组求解和的值是解题的关键,考查运算求解能力,属于基础题.6、B【解析】由均值不等式可得,分析即得解【详解】由题意,,由均值不等式,当且仅当,即时等号成立故,有最小值0故选:B7、C【解析】因为a3-b3=(a-b)(a28、D【解析】直接利用函数零点定义,解即可.【详解】由,解得或,函数零点是.故选:.【点睛】本题主要考查的是函数零点的求法,直接利用定义可以求解,是基础题.9、B【解析】直接利用诱导公式化简,再根据同角三角函数的基本关系代入计算可得;【详解】解:因为,所以;故选:B10、D【解析】根据一次函数的性质,结合选项逐一判断即可.【详解】A:当时,,所以当乘客量为0时,亏损1个单位,故本选项说法正确;B:当时,,当时,,所以本选项说法正确;C:降低成本而保持票价不变,两条线是平行,所以本选项正确;D:由图可知中:成本不变,同时提高票价,所以本选项说法不正确,故选:D11、A【解析】,所以直线过定点,所以,,直线在到之间,所以或,故选A12、B【解析】由于不等式的基本性质,“a>b”⇒“ac>bc”必须有c>0这一条件.解:主要考查不等式的性质.当c=0时显然左边无法推导出右边,但右边可以推出左边.故选B考点:不等式的性质点评:充分利用不等式的基本性质是推导不等关系的重要条件二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、##0.5【解析】首先计算,从而得到,即可得到答案.【详解】因为,所以.故答案为:14、【解析】分别对,分别大于1,等于1,小于1的讨论,即可.【详解】对,分别大于1,等于1,小于1讨论,当,解得当,不存在,当时,,解得,故x的范围为【点睛】本道题考查了分段函数问题,分类讨论,即可,难度中等15、[-,-)∪(,]【解析】利用周期与对称性得出f(x)的函数图象,根据交点个数列出不等式得出k的范围【详解】∵当x>2时,f(x)=f(x-1),∴f(x)在(1,+∞)上是周期为1的函数,作出y=f(x)的函数图象如下:∵方程f(x)=kx恰有3个不同的根,∴y=f(x)与y=kx有三个交点,若k>0,则若k<0,由对称性可知.故答案为[-,-)∪(,].【点睛】本题考查了函数零点与函数图象的关系,函数周期与奇偶性的应用,方程根的问题常转化为函数图象的交点问题,属于中档题16、【解析】由基本不等式求得的最小值,解不等式可得的范围【详解】∵,,,,∴,当且仅当,即时等号成立,∴的最小值为8,由解得,故答案为:三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1);(2)11【解析】(1)利用向量的坐标运算和平面向量基本定理即可得出;(2)利用向量共线定理即可得出.【详解】(1)由题意得,,∴解得,(2)∵向量,,∴则时,解得:【点睛】本题考查了向量的坐标运算、平面向量基本定理、向量共线定理,考查了计算能力,属于基础题18、(1)详见解析(2)详见解析【解析】(1)按要求写出对应公式即可.(2)利用任意角定义以及对称性即可证明对应公式.【详解】(1)①,,.②,,.(2)①证明:设任意角的终边与单位圆的交点坐标为.由于角的终边与角的终边关于轴对称,因此角的终边与单位圆的交点与点关于轴对称,所以点的坐标是.由任意角的三角函数定义得,,,;,,.所以,,.②证明:设任意角的终边与单位圆的交点坐标为.由于角的终边与角的终边关于轴对称,因此角的终边与单位圆的交点与点关于轴对称,所以点的坐标是.由任意角的三角函数定义得,,,;,,.所以,,.【点睛】主要考查对诱导公式的掌握以及推导过程,熟练运用任意角三角函数的定义,属于基础题.19、(1)增区间是,减区间是;(2)【解析】(1)根据函数的图象即可写出;(2)根据函数零点的定义结合分类讨论思想即可求出小问1详解】的增区间是,减区间是【小问2详解】由得;由得或,当时,得或,所以1是的零点,①当时,则都不是的零点,故只有一个零点;②当时,即时,为使有两个零点,则,解得,此时的两个零点为.当时,得,所以1不是的零点,为使有两个零点,则,解得,此时的两个零点为,所以.综上,当或时,即的取值范围为,有两个零点20、(1)见解析;(2).【解析】(1)通过和得到平面,利用等腰三角形的性质可得,可得结论;(2)过点作,垂足为,连接,证得是二面角的平面角,在中先求出,然后在中求出结论.试题解析:(1)证明:在四棱锥中,因底面,平面,故.由条件,,∴平面.又平面,∴.由,,可得.∵是的中点,∴.又,综上得平面.(2)过点作,垂足为,连接,由(1)知,平面,在平面内的射影是,则因此是二面角的平面角由已知,可得.设,可得,,,在中,∵,∴,则,在中,.21、(1)见解析;(2)【解析】(1)根据函数的表达式,作出函数的图象即可;(2)问题转化为求函数的交点问题,结合函数的图象,由数形结合得出即可【详解】解:(1)画出函数的图象,如图示:,由

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论