2023-2024学年东莞东华高级中学高一上数学期末监测模拟试题含解析_第1页
2023-2024学年东莞东华高级中学高一上数学期末监测模拟试题含解析_第2页
2023-2024学年东莞东华高级中学高一上数学期末监测模拟试题含解析_第3页
2023-2024学年东莞东华高级中学高一上数学期末监测模拟试题含解析_第4页
2023-2024学年东莞东华高级中学高一上数学期末监测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年东莞东华高级中学高一上数学期末监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12小题,共60分)1.已知函数,的图象与直线有两个交点,则的最大值为()A.1 B.2C. D.2.由直线上的点向圆引切线,则切线长的最小值为()A. B.C. D.3.若幂函数的图象经过点,则=A. B.C.3 D.94.已知是定义在上的奇函数且单调递增,,则的取值范围是()A. B.C. D.5.若则一定有A. B.C. D.6.如图,在正三棱锥中,,点为棱的中点,则异面直线与所成角的大小为()A.30° B.45°C.60° D.90°7.圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的侧面积为84π,则圆台较小底面的半径为()A.7 B.6C.5 D.38.函数的单调递增区间为()A. B.C. D.9.设,,则a,b,c的大小关系是()A. B.C. D.10.已知正方体外接球的表面积为,正方体外接球的表面积为,若这两个正方体的所有棱长之和为,则的最小值为()A. B.C. D.11.设P为函数图象上一点,O为坐标原点,则的最小值为()A.2 B.C. D.12.设,,且,则A. B.C. D.二、填空题(本大题共4小题,共20分)13.已知圆C:(x﹣2)2+(y﹣1)2=10与直线l:2x+y=0,则圆C与直线l的位置关系是_____14.若f(x)为偶函数,且当x≤0时,,则不等式>的解集______.15.若幂函数的图象过点,则______.16.函数(且)的图象必经过点___________.三、解答题(本大题共6小题,共70分)17.已知(1)求函数的单调递增区间;(2)当时,函数的值域为,求实数的范围18.已知全集,集合(1)若,求(2).若p是q的充分不必要条件,求a的取值范围19.已知,均为锐角,且,是方程的两根.(1)求的值;(2)若,求与的值.20.某保险公司决定每月给推销员确定具体的销售目标,对推销员实行目标管理.销售目标确定的适当与否,直接影响公司的经济效益和推销员的工作积极性,为此,该公司当月随机抽取了50位推销员上个月的月销售额(单位:万元),绘制成如图所示的频率分布直方图:(1)①根据图中数据,求出月销售额在小组内的频率;②根据直方图估计,月销售目标定为多少万元时,能够使的推销员完成任务?并说明理由;(2)该公司决定从月销售额为和的两个小组中,选取2位推销员介绍销售经验,求选出的推销员来自同一个小组的概率.21.(1)当,求的值;(2)设,求的值.22.已知函数f(x)=(m∈Z)为偶函数,且在(0,+∞)上为增函数(1)求m的值,并确定f(x)的解析式;(2)若g(x)=loga[f(x)-ax](a>0且a≠1),是否存在实数a,使g(x)在区间[2,3]上的最大值为2,若存在,求出a的值,若不存在,请说明理由

参考答案一、选择题(本大题共12小题,共60分)1、D【解析】由可得,然后可得的最大值为,即可得到答案.【详解】由可得,所以当时,由与有两个交点可得的最大值为所以则的最大值为故选:D2、B【解析】要使切线长最小,必须直线y=x+2上的点到圆心的距离最小,此最小值即为圆心(4,﹣2)到直线的距离m,求出m,由勾股定理可求切线长的最小值【详解】要使切线长最小,必须直线y=x+2上的点到圆心的距离最小,此最小值即为圆心(4,﹣2)到直线的距离m,由点到直线的距离公式得m==4,由勾股定理求得切线长的最小值为=故选B【点睛】本题考查直线和圆的位置关系,点到直线的距离公式、勾股定理的应用.解题的关键是理解要使切线长最小,必须直线y=x+2上的点到圆心的距离最小3、B【解析】利用待定系数法求出幂函数y=f(x)的解析式,再计算f(3)的值【详解】设幂函数y=f(x)=xα,其图象经过点,∴2α,解得α,∴f(x),∴f(3)故选B【点睛】本题考查了幂函数的定义与应用问题,是基础题4、A【解析】根据函数的奇偶性,把不等式转化为,再结合函数的单调性,列出不等式组,即可求解.【详解】由题意,函数是定义在上的奇函数,所以,则不等式,可得,又因为单调递增,所以,解得,故选:.【点睛】求解函数不等式的方法:1、解函数不等式的依据是函数的单调性的定义,具体步骤:①将函数不等式转化为的形式;②根据函数的单调性去掉对应法则“”转化为形如:“”或“”的常规不等式,从而得解.2、利用函数的图象研究不等式,当不等式问题不能用代数法求解但其与函数有关时,常将不等式问题转化为两函数的图象上、下关系问题,从而利用数形结合求解.5、D【解析】本题主要考查不等关系.已知,所以,所以,故.故选6、C【解析】取BC的中点E,∠DFE即为所求,结合条件即求.【详解】如图取BC的中点E,连接EF,DE,则EF∥AB,∠DFE即为所求,设,在正三棱锥中,,故,∴,∴,即异面直线与所成角的大小为.故选:C.7、A【解析】设圆台上底面半径为,由圆台侧面积公式列出方程,求解即可得解.【详解】设圆台上底面半径为,由题意下底面半径为,母线长,所以,解得.故选:A.【点睛】本题考查了圆台侧面积公式的应用,属于基础题.8、C【解析】由解出范围即可.【详解】由,可得,所以函数的单调递增区间为,故选C.9、C【解析】根据指数函数与对数函数的性质,求得的取值范围,即可求解.【详解】由对数的性质,可得,又由指数函数的性质,可得,即,且,所以.故选:C.10、B【解析】设正方体的棱长为,正方体的棱长为,然后表示出两个正方体外接球的表面积,求出化简变形可得答案【详解】解:设正方体的棱长为,正方体的棱长为因为,所以,则因为,所以,因为,所以,故当时,取得最小值,且最小值为故选:B11、D【解析】根据已知条件,结合两点之间的距离公式,以及基本不等式的公式,即可求解【详解】为函数的图象上一点,可设,,当且仅当,即时,等号成立故的最小值为故选:12、C【解析】,则,即,,,即故选点睛:本题主要考查了切化弦及两角和的余弦公式的应用,在遇到含有正弦、余弦及正切的运算时可以将正切转化为正弦及余弦,然后化简计算,本题还运用了两角和的余弦公式并结合诱导公式化简,注意题目中的取值范围二、填空题(本大题共4小题,共20分)13、相交【解析】根据题意只需判断圆心到直线的距离与半径比较大小即可判断详解】由题意有圆心,半径则圆心到直线的距离故直线与圆C相交故答案为:相交【点睛】本题主要考查直线和圆的位置关系的判断,属于基础试题14、【解析】由已知条件分析在上的单调性,利用函数的奇偶性可得,再根据函数的单调性解不等式即可.【详解】f(x)为偶函数,且当x≤0时,单调递增,当时,函数单调递减,若>,f(x)为偶函数,,,同时平方并化简得,解得或,即不等式>的解集为.故答案为:【点睛】本题考查函数的奇偶性与单调性的综合应用,属于中档题.15、【解析】设,将点代入函数的解析式,求出实数的值,即可求出的值.【详解】设,则,得,,因此,.故答案为.【点睛】本题考查幂函数值的计算,解题的关键就是求出幂函数的解析式,考查运算求解能力,属于基础题.16、【解析】令得,把代入函数的解析式得,即得解.【详解】解:因为函数,其中,,令得,把代入函数的解析式得,所以函数(且)的图像必经过点的坐标为.故答案为:三、解答题(本大题共6小题,共70分)17、(1),(2)【解析】(1)根据正弦函数的性质计算可得;(2)首先求出函数取最大值时的取值集合,即可得到,再根据函数在上是减函数,且,则的最大值为内使函数值为的值,即可求出的取值范围;【小问1详解】解:对于函数,令,,求得,故函数的单调递增区间为,【小问2详解】解:令,,解得,.即时取得最大值因为当时,取到最大值,所以又函数在上是减函数,且,故的最大值为内使函数值为的值,令,即,因为,所以,所以,解得,所以的取值范围是18、(1)或;(2)【解析】(1)根据集合的补集和并集的定义进行求解即可;(2)由充分不必要条件确定集合之间的关系,根据真子集的性质进行求解即可.【小问1详解】因为,所以,因此或,而,所以或;【小问2详解】因为p是q的充分不必要条件,所以,因此有:,故a的取值范围为.19、(1)(2);【解析】(1)利用韦达定理求出,再根据两角和的正切公式即可得解;(2)求出,再根据二倍角正切公式即可求得,化弦为切即可求出.【小问1详解】解:因为,均为锐角,且,是方程的两根,所以,所以;【小问2详解】因为,均为锐角,,所以,所以,所以,.20、(1)①;②17,理由见解析(2)【解析】(1)①利用各组的频率和为1求解,②由题意可得的推销员不能完成该目标,而前两组的频率和,前三组的频率和为,所以月销售目标应在第3组,从而可求得结果,(2)由频率分布直方图结合题意可得待选的推销员一共有4人,然后利用列举法求解概率【小问1详解】①月销售额在小组内的频率为.②若要使的推销员能完成月销售额目标,则意味着的推销员不能完成该目标.根据题图所示的频率分布直方图知,和两组的频率之和为0.18,故估计月销售额目标应定为(万元).【小问2详解】根据直方图可知,月销售额为和的频率之和为0.08,由可知待选的推销员一共有4人.设这4人分别为,则样本空间为{},一共有6种情况其中2人来自同一组的情况有2种所以选出的推销员来自同一个小组的概率.21、(1);(2)【解析】(1)利用商数关系,化弦为切,即可得到结果;(2)利用诱导公式化简,代入即可得到结果.【详解】(1)因为,且,所以,原式=(2)∵,【点睛】本题考查三角函数的恒等变换,涉及到正余弦的齐次式(弦化切),诱导公式,属于中档题.22、(1)或,(2)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论