2023-2024学年济南市育英中学高一上数学期末复习检测试题含解析_第1页
2023-2024学年济南市育英中学高一上数学期末复习检测试题含解析_第2页
2023-2024学年济南市育英中学高一上数学期末复习检测试题含解析_第3页
2023-2024学年济南市育英中学高一上数学期末复习检测试题含解析_第4页
2023-2024学年济南市育英中学高一上数学期末复习检测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年济南市育英中学高一上数学期末复习检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若函数在区间上单调递增,则实数k的取值范围是()A. B.C. D.2.函数在的图象大致为()A. B.C. D.3.下列函数中,既是偶函数,又在区间上单调递增的函数是()A. B.C. D.4.将函数的图象沿轴向左平移个单位后,得到一个偶函数的图象,则的一个可能取值为A. B.C. D.5.下列函数中,为偶函数的是()A. B.C. D.6.已知,,,则大小关系为()A. B.C. D.7.已知函数,则该函数的单调递减区间是()A. B.C. D.8.已知角是的内角,则“”是“”的()A.充要条件 B.充分不必要条件C.必要不充分条件 D.既不充分又不必要条件9.从装有两个红球和两个白球的口袋内任取两个球,那么互斥而不对立的事件是()A.至少有一个白球与都是红球 B.恰好有一个白球与都是红球C.至少有一个白球与都是白球 D.至少有一个白球与至少一个红球10.下表是某次测量中两个变量的一组数据,若将表示为关于的函数,则最可能的函数模型是234567890.631.011.261.461.631.771.891.99A.一次函数模型 B.二次函数模型C.指数函数模型 D.对数函数模型二、填空题:本大题共6小题,每小题5分,共30分。11.已知正实数x,y满足,则的最小值为______12.已知函数,则_________13.设函数fx=ex-1,x≥a-xx2-5x+6,x<a,则当时,14.已知α为第二象限角,且则的值为______.15.设平面向量,,则__________.若与的夹角为钝角,则的取值范围是__________16.已知函数(且)在上单调递减,且关于的方程恰有两个不相等的实数解,则的取值范围是_____三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.近来,国内多个城市纷纷加码布局“夜经济”,以满足不同层次的多元消费,并拉动就业、带动创业,进而提升区域经济发展活力.某夜市的一位工艺品售卖者,通过对每天销售情况的调查发现:该工艺品在过去的一个月内(以天计),每件的销售价格(单位:元)与时间(单位:天)的函数关系近似满足(为常数,且),日销售量(单位:件)与时间(单位:天)的部分数据如下表所示:已知第天的日销售收入为元(1)求的值;(2)给出以下四个函数模型:①;②;③;④请你根据上表中数据,从中选择你认为最合适的一种函数模型来描述日销售量与时间的变化关系,并求出该函数的解析式;(3)设该工艺品的日销售收入为(单位:元),求的最小值18.已知函数.(1)判断的奇偶性,并证明;(2)证明:在区间上单调递减.19.某中学共有3000名学生,其中高一年级有1200名学生,为了解学生的睡眠情况,现用分层抽样的方法,在三个年级中抽取了200名学生,依据每名学生的睡眠时间(单位:小时),绘制出了如图所示的频率分布直方图.(1)求样本中高一年级学生的人数及图中a的值;(2)估计样本数据中位数(保留两位小数);(3)估计全校睡眠时间不低于7个小时的学生人数.20.求函数的定义域,并指出它的单调性及单调区间21.已知圆和定点,由圆外一动点向圆引切线,切点为,且满足.(1)求证:动点在定直线上;(2)求线段长的最小值并写出此时点的坐标.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】根据函数的单调性得到关于k的不等式组,解出即可【详解】解:f(x)==1+,若f(x)在(﹣2,+∞)上单调递增,则,故k≤﹣2,故选:C2、D【解析】先判断出函数的奇偶性,然后根据的符号判断出的大致图象.【详解】因为,所以,为奇函数,所以排除A项,又,所以排除B、C两项,故选:D【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的特征点,排除不合要求的图象.3、D【解析】根据常见函数的单调性和奇偶性可直接判断出答案.【详解】是奇函数,不满足题意;的定义域为,是非奇非偶函数,不满足题意;是非奇非偶函数,不满足题意;是偶函数,且在区间上单调递增,满足题意;故选:D4、B【解析】得到的偶函数解析式为,显然【考点定位】本题考查三角函数的图象和性质,要注意三角函数两种变换的区别,选择合适的值通过诱导公式把转化为余弦函数是考查的最终目的.5、D【解析】利用函数的奇偶性的定义逐一判断即可.【详解】A,因为函数定义域为:,且,所以为奇函数,故错误;B,因为函数定义域为:R,,而,所以函数为非奇非偶函数,故错误;C,,因为函数定义域为:R,,而,所以函数为非奇非偶函数,故错误;D,因为函数定义域为:R,,所以函数为偶函数,故正确;故选:D.6、B【解析】分别判断与0,1等的大小关系判断即可.【详解】因为.故.又,故.又,故.所以.故选:B【点睛】本题主要考查了根据指对幂函数的单调性判断函数值大小的问题,属于基础题.7、C【解析】先用诱导公式化简,再求单调递减区间.【详解】要求单调递减区间,只需,.故选:C.【点睛】(1)三角函数问题通常需要把它化为“一角一名一次”的结构,借助于或的性质解题;(2)求单调区间,最后的结论务必写成区间形式,不能写成集合或不等式8、C【解析】在中,由求出角A,再利用充分条件、必要条件的定义直接判断作答.【详解】因角是的内角,则,当时,或,即不一定能推出,若,则,所以“”是“”的必要不充分条件.故选:C9、B【解析】列举每个事件所包含的基本事件,结合互斥事件和对立事件的定义,依次验证即可.【详解】解:对于A,事件:“至少有一个白球”与事件:“都是红球”不能同时发生,但是对立,故A错误;对于B,事件:“恰好有一个白球”与事件:“都是红球”不能同时发生,但从口袋内任取两个球时还有可能是两个都是白球,所以两个事件互斥而不对立,故B正确;对于C,事件:“至少有一个白球”与事件:“都是白球”可以同时发生,所以这两个事件不是互斥的,故C错误;对于D,事件:“至少有一个白球”与事件:“至少一个红球”可以同时发生,即“一个白球,一个红球”,所以这两个事件不是互斥的,故D错误.故选:B.10、D【解析】对于,由于均匀增加,而值不是均匀递增,不是一次函数模型;对于,由于该函数是单调递增,不是二次函数模型;对于,过不是指数函数模型,故选D.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】令,转化条件为方程有解,运算可得【详解】令,则,化简得,所以,解得或(舍去),当时,,符合题意,所以得最小值为.故答案为:.12、【解析】运用代入法进行求解即可.【详解】,故答案为:13、①.②.【解析】当时得到,令,再利用定义法证明在上单调递减,从而得到,令,,根据指数函数的性质得到函数的单调性,即可求出的最小值,即可得到的最小值;分别求出与的零点,根据恰有两个零点,即可求出的取值范围;【详解】解:当时,令,,设且,则因为且,所以,,所以,所以,所以在上单调递减,所以,令,,函数在定义域上单调递增,所以,所以的最小值为;对于,令,即,解得,对于,令,即,解得或或,因为fx=ex-1,x≥a-xx2-5x+6,x<a恰有两个零点,则和一定为的零点,不为的零点,所以,即;故答案为:;;14、【解析】根据已知求解得出,再利用诱导公式和商数关系化简可求【详解】由,得,得或.α为第二象限角,,.故答案:.15、①.②.【解析】(1)由题意得(2)∵与的夹角为钝角,∴,解得又当时,向量,共线反向,满足,但此时向量的夹角不是钝角,故不合题意综上的取值范围是答案:;16、【解析】利用函数是减函数,根据对数的图象和性质判断出的大致范围,再根据为减函数,得到不等式组,利用函数的图象,方程的解的个数,推出的范围【详解】函数(且),在上单调递减,则:;解得,由图象可知,在上,有且仅有一个解,故在上,同样有且仅有一个解,当即时,联立,则,解得或1(舍去),当时由图象可知,符合条件,综上:的取值范围为.故答案为【点睛】本题考查函数的单调性和方程的零点,对于分段函数在定义域内是减函数,除了每一段都是减函数以外,还要注意右段在左段的下方,经常会被忽略,是一个易错点;复杂方程的解通常转化为函数的零点,或两函数的交点,体现了数学结合思想,属于难题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2);(3).【解析】(1)根据第10天的日销售收入,得到,即可求解;(2)由数据知先增后减,选择②,由对称性求得实数的值,再利用进而列出方程组,求得的值,从而求得函数的解析式;(3)根据(2)求得的解析式,然后利用基本不等式和函数的单调性分别求得各段的最小值,比较得到结论.【详解】(1)因为第10天的日销售收入为505元,所以,即,解得.(2)由表格中的数据知,当时间变换时,先增后减,函数模型:①;③;④都是单调函数,所以选择模型②:,由,可得,解得,由,解得,所以日销售量与时间的变化的关系式为.(3)由(2)知,所以,即,当时,由基本不等式,可得,当且仅当时,即时等号成立,当时,为减函数,所以函数的最小值为,综上可得,当时,函数取得最小值【点睛】求解所给函数模型解决实际问题的关注点:1、认清所给函数模型,弄清哪些量为待定系数;2、根据已知利用待定系数法,列出方程,确定函数模型中的待定系数;3、结合函数的基本形式,利用函数模型求解实际问题,18、(1)是偶函数,证明见解析(2)证明见解析【解析】(1)先求定义域,再利用函数奇偶性的定义证明即可,(2)利用单调性的定义证明【小问1详解】为偶函数,证明如下:定义域为R,因为,所以是偶函数.【小问2详解】任取,且,则因为,所以,所以,即,由函数单调性定义可知,在区间上单调递减.19、(1)人数为,;(2)7.42;(3)约为人.【解析】(1)由分层抽样等比例性质求高一年级学生的人数,根据直方图及频率和为1求参数a.(2)由频率直方图及中位数的性质估计中位数.(3)由直方图计算区间的频率,进而估计全校睡眠时间不低于7个小时的学生人数.【小问1详解】由分层抽样等比例的性质,样本中高一年级学生的人数为.由,可得.【小问2详解】设中位数为x,由、,知:,∴.得,故样本数据的中位数约为7.42.【小问3详解】由图可知,样本数据落在的频率为.故全校睡眠时间不低于7个

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论