版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年山东省烟台市芝罘区烟台二中高一上数学期末质量跟踪监视试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.纳皮尔是苏格兰数学家,其主要成果有球面三角中纳皮尔比拟式、纳皮尔圆部法则(1614)和纳皮尔算筹(1617),而最大的贡献是对数的发明,著有《奇妙的对数定律说明书》,并且发明了对数尺,可以利用对数尺查询出任意一对数值.现将物体放在空气中冷却,如果物体原来的温度是(℃),空气的温度是(℃),经过t分钟后物体的温度T(℃)可由公式得出,如温度为90℃的物体,放在空气中冷却2.5236分钟后,物体的温度是50℃,若根据对数尺可以查询出,则空气温度是()A.5℃ B.10℃C.15℃ D.20℃2.已知集合,,则()A. B.C. D.3.已知函数则的值为()A. B.C.0 D.14.已知函数是定义在上的奇函数,,且,则()A. B.C. D.5.已知命题“存在,使得等式成立”是假命题,则实数的取值范围是()A. B.C. D.6.设全集,集合,则等于A. B.C. D.7.的值等于()A. B.C. D.8.(程序如下图)程序的输出结果为A.3,4 B.7,7C.7,8 D.7,119.已知函数,,则函数的值域为()A B.C. D.10.已知锐角终边上一点A的坐标为,则的弧度数为()A.3 B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,写出一个满足条件的的值:______12.将正方形ABCD沿对角线BD折成直二面角A-BD-C,有如下四个结论①AC⊥BD;②△ACD是等边三角形;③AB与平面BCD成60°的角;④AB与CD所成的角是60°.其中正确结论的序号是________13.若函数,则________14.若,,且,则的最小值为__________15.已知集合A={﹣1,2,3},f:x→2x是集合A到集合B的映射,则写出一个满足条件的集合B_____16.已知直三棱柱的个顶点都在球的球面上,若,,,,则球的直径为________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知角的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边经过点.(1)求的值;(2)若第一象限角满足,求的值.18.若集合,,.(1)求;(2)若,求实数的取值范围.19.已知函数.(1)求函数的周期;(2)求函数的单调递增区间.20.在三棱锥中,平面平面,,,分别是棱,上的点(1)为的中点,求证:平面平面.(2)若,平面,求的值.21.已知函数(1)求函数的定义域及的值;(2)判断函数的奇偶性;(3)判断在上的单调性,并给予证明
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】依题意可得,即,即可得到方程,解得即可;【详解】:依题意,即,又,所以,即,解得;故选:B2、D【解析】利用对数函数与指数函数的性质化简集合,再根据集合交集的定义求解即可.【详解】因为,,所以,,则,故选:D.3、D【解析】根据分段函数解析式及指数对数的运算法则计算可得;【详解】解:因为,所以,所以,故选:D4、C【解析】由得函数的周期性,由周期性变形自变量的值,最后由奇函数性质求得值【详解】∵是奇函数,∴,又,∴是周期函数,周期为4∴故选:C5、D【解析】由题意可得,由的范围可得的范围,再求其补集即可求解.【详解】由可得,因为,所以,若命题“存在,使得等式成立”是假命题,则实数的取值范围是,故选:D.6、A【解析】,=7、D【解析】利用诱导公式可求得的值.【详解】.故选:D8、D【解析】∵变量初始值X=3,Y=4,∴根据X=X+Y得输出的X=7.又∵Y=X+Y,∴输出的Y=11.故选D.9、B【解析】先判断函数的单调性,再利用单调性求解.【详解】因为,在上都是增函数,由复合函数的单调性知:函数,在上为增函数,所以函数的值域为,故选:B10、C【解析】先根据定义得正切值,再根据诱导公式求解【详解】由题意得,选C.【点睛】本题考查三角函数定义以及诱导公式,考查基本分析化简能力,属基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、(答案不唯一)【解析】利用,可得,,计算即可得出结果.【详解】因为,所以,则,或,故答案为:(答案不唯一)12、①②④【解析】①取BD的中点O,连接OA,OC,所以,所以平面OAC,所以AC⊥BD;②设正方形的边长为a,则在直角三角形ACO中,可以求得OC=a,所以△ACD是等边三角形;③AB与平面BCD成45角;④分别取BC,AC的中点为M,N,连接ME,NE,MN.则MN∥AB,且MN=AB=a,ME∥CD,且ME=CD=a,∴∠EMN是异面直线AB,CD所成的角.在Rt△AEC中,AE=CE=a,AC=a,∴NE=AC=a.∴△MEN是正三角形,∴∠EMN=60°,故④正确考点:本小题主要考查平面图形向空间图形的折叠问题,考查学生的空间想象能力.点评:解决此类折叠问题,关键是搞清楚折叠前后的变量和不变的量.13、0【解析】令x=1代入即可求出结果.【详解】令,则.【点睛】本题主要考查求函数的值,属于基础题型.14、##【解析】运用均值不等式中“1”的妙用即可求解.【详解】解:因为,,且,所以,当且仅当时等号成立,故答案为:.15、{﹣2,4,6}【解析】先利用应关系f:x→2x,根据原像求像的值,像的值即是满足条件的集合B中元素【详解】∵对应关系为f:x→2x,={-1,2,3},∴2x=-2,4,6共3个值,则-2,4,6这三个元素一定在集合B中,根据映射的定义集合B中还可能有其他元素,我们可以取其中一个满足条件的集合B,不妨取集合B={-2,4,6}.故答案为:{-2,4,6}【点睛】本题考查映射的概念,像与原像的定义,集合A中所有元素的集合即为集合B中元素集合.16、【解析】根据题设条件可以判断球心的位置,进而求解【详解】因为三棱柱的个顶点都在球的球面上,若,,,,所以三棱柱的底面是直角三角形,侧棱与底面垂直,的外心是斜边的中点,上下底面的中心连线垂直底面,其中点是球心,即侧面,经过球球心,球的直径是侧面的对角线的长,因为,,,所以球的半径为:故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)可使用已知条件,表示出,然后利用诱导公式、和差公式和二倍角公式对要求解的式子进行化简,带入即可求解;(2)可根据和的值,结合和的范围,判定出的范围,然后计算出的值,将要求的借助使用和差公式展开即可求解.【小问1详解】角的终边经过点,所以.所以.【小问2详解】由条件可知为第一象限角.又为第一象限角,,所以为第二象限角,由得,由,得.18、(1);(2).【解析】(1)解不等式求出集合,再进行交集运算即可求解;(2)解不等式求集合,根据并集的结果列不等式即可求解.【详解】(1),,;(2),或,,.即实数的取值范围为.19、(1)(2)【解析】(1)先把函数化简为,利用正弦型函数的周期公式,即得解(2)由解出的范围就是所要求的递增区间.【小问1详解】故函数的周期【小问2详解】由,得,所以单调递增区间为20、(1)证明见解析;(2)【解析】(1)根据等腰三角形的性质,证得,由面面垂直的性质定理,证得平面,进而证得平面平面.(2)根据线面平行的性质定理,证得,平行线分线段成比例,由此求得的值.【详解】(1),为的中点,所以.又因为平面平面,平面平面,且平面,所以平面,又平面,所以平面平面.(2)∵平面,面,面面∴,∴.【点睛】本小题主要考查面面垂直的判定定理和性质定理,考查线面平行的性质定理,考查空间想象能力和逻辑推理能力,属于中档题.21、(1)(2)偶函数(3)在上是减函数,证明见解析.【解析】(1)根据对数函数成立的条件即可求函数f(x)的定义域及的值;(2)根据函数奇偶性的定义
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 赣西科技职业学院《中学科技作品创作》2023-2024学年第一学期期末试卷
- 《护理管理制度培训》课件
- 劳动小学生课件六上浙教版
- 赣东学院《管理研究方法》2023-2024学年第一学期期末试卷
- 甘肃中医药大学《线描人物》2023-2024学年第一学期期末试卷
- 入矿培训课件
- 手指流血安全教育课件
- 安全理念课件标题撰写
- 2021一建考试《建设工程项目管理》题库试卷考点题库及答案解析五
- 《企业并购管理》课件
- 云南省昆明市(2024年-2025年小学六年级语文)部编版期末考试(上学期)试卷及答案
- T-CECS120-2021套接紧定式钢导管施工及验收规程
- 2024年浙江省单独考试招生文化课考试数学试卷真题(含答案详解)
- 《婴幼儿常见病识别与预防》课件-婴幼儿湿疹
- 人工智能导论智慧树知到期末考试答案章节答案2024年哈尔滨工程大学
- 医院感染监测清单
- 生产安全事故的应急救援预案
- 行业场所从业人员登记表
- 煤矿井下供电设计课件
- CASS文字编缉
- JJF 1406-2013 地面激光扫描仪校准规范(原版-高清)
评论
0/150
提交评论