版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年上海市戏剧学院附中高一数学第一学期期末综合测试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.已知幂函数在上单调递减,设,,,则()A. B.C. D.2.如图,向量,,的起点与终点均在正方形网格的格点上,则向量用基底,表示为A. B.C. D.3.直线与曲线有且仅有个公共点,则实数的取值范围是A. B.C. D.4.已知某几何体的三视图如图所示,则该几何体的体积为A. B.C. D.5.已知函数,若则a的值为(
)A. B.C.或 D.或6.定义在上的偶函数在时为增函数,若实数满足,则的取值范围是A. B.C. D.7.角的终边经过点,则的值为()A. B.C. D.8.已知U={2,3,4,5,6,7},M={3,4,5,7},N={2,4,5,6},则()A.
4,6
B.C
D.9..已知集合,集合,则()A. B.C. D.10.已知函数的部分图象如图所示,则将的图象向左平移个单位后,得到的图象对应的函数解析式为()A. B.C. D.11.已知,且,则的最小值为()A.3 B.4C.5 D.612.已知且,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.已知正数a,b满足,则的最小值为______14.若,,且,则的最小值为________15.已知幂函数过定点,且满足,则的范围为________16.不等式x2-5x+6≤0的解集为______.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.已知是同一平面内的三个向量,其中(1)若,且,求的坐标;(2)若,且与的夹角为,求的值18.设是实数,(1)证明:f(x)是增函数;(2)试确定的值,使f(x)为奇函数19.已知圆C经过点A(0,0),B(7,7),圆心在直线上(1)求圆C的标准方程;(2)若直线l与圆C相切且与x,y轴截距相等,求直线l的方程20.已知关于一元二次不等式的解集为.(1)求函数的最小值;(2)求关于的一元二次不等式的解集.21.已知函数(其中),函数(其中).(1)若且函数存在零点,求的取值范围;(2)若是偶函数且函数的图象与函数的图象只有一个公共点,求实数的取值范围.22.某网站为调查某项业务的受众年龄,从订购该项业务的人群中随机选出200人,并将这200人的年龄按照,,,,分成5组,得到的频率分布直方图如图所示:(1)求的值和样本的平均数(同一组数据用该区间的中点值作代表);(2)现在要从年龄较小的第1,2组中用分层抽样的方法抽取5人,再从这5人中随机抽取2人,求这2人中恰有1人年龄在中的概率
参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、C【解析】根据幂函数的概念以及幂函数的单调性求出,在根据指数函数与对数函数的单调性得到,根据幂函数的单调性得到,再结合偶函数可得答案.【详解】根据幂函数的定义可得,解得或,当时,,此时满足在上单调递增,不合题意,当时,,此时在上单调递减,所以.因为,又,所以,因为在上单调递减,所以,又因为为偶函数,所以,所以.故选:C2、C【解析】由题设有,所以,选C.3、A【解析】如图所示,直线过点,圆的圆心坐标直线与曲线相切时,,直线与曲线有且仅有个公共点,则实数的取值范围是考点:直线与圆相交,相切问题4、D【解析】解:该几何体是一个底面半径为1、高为4的圆柱被一个平面分割成两部分中的一个部分,故其体积为.本题选择D选项.5、D【解析】按照分段函数的分类标准,在各个区间上,构造求解,并根据区间对所求的解,进行恰当的取舍即可.令,则或,解之得.【点睛】本题主要考查分段函数,属于基础题型.6、C【解析】因为定义在上的偶函数,所以即又在时为增函数,则,解得故选点睛:本题考查了函数的奇偶性,单调性和运用,考查对数不等式的解法及运算能力,所求不等式中与由对数式运算法则可知互为相反数,与偶函数的性质结合可将不等式化简,借助函数在上是增函数可确定在为减函数,利用偶函数的对称性可得到自变量的范围,从而求得关于的不等式,结合对数函数单调性可得到的取值范围7、D【解析】根据三角函数定义求解即可.【详解】因为角的终边经过点,所以,,所以.故选:D8、B【解析】利用交、并、补集运算,对答案项逐一验证即可【详解】,A错误={2,3,4,5,6,7}=,B正确
{3,4,5,7},C错误,,D错误故选:B【点睛】本题考查集合的混合运算,较简单9、A【解析】先将分别变形,然后根据数值的奇偶判断出的关系,由此求解出的结果.【详解】因为,所以,所以;又因为,所以,所以,又因为表示所有的奇数,表示部分奇数,所以;所以,故选:A.10、C【解析】根据给定图象求出函数的解析式,再平移,代入计算作答.【详解】观察图象得,令函数周期为,有,解得,则,而当时,,则有,又,则,因此,,将的图象向左平移个单位得:,所以将的图象向左平移个单位后,得到的图象对应的函数解析式为.故选:C11、C【解析】依题意可得,则,再利用基本不等式计算可得;【详解】解:因为且,所以,所以当且仅当,即,时取等号;所以的最小值为故选:C【点睛】利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方12、D【解析】根据充分、必要条件的知识确定正确选项.【详解】“”时,若,则,不能得到“”.“”时,若,则,不能得到“”.所以“”是“”的既不充分也不必要条件.故选:D二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、##【解析】右边化简可得,利用基本不等式,计算化简即可求得结果.【详解】,故,则,当且仅当时,等号成立故答案为:14、4【解析】应用基本不等式“1”的代换求最小值即可,注意等号成立的条件.【详解】由题设,知:当且仅当时等号成立.故答案为:4.15、【解析】根据幂函数所过的点求出解析式,利用奇偶性和单调性去掉转化为关于的不等式即可求解.【详解】设幂函数,其图象过点,所以,即,解得:,所以,因为,所以为奇函数,且在和上单调递减,所以可化为,可得,解得:,所以的范围为,故答案为:.16、【解析】根据二次函数的特点即可求解.【详解】由x2-5x+6≤0,可以看作抛物线,抛物线开口向上,与x轴的交点为,∴,即原不等式的解集为.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1)或(2)【解析】(1)由可设,再由可得答案(2)由数量积的定义可得,代入即可得答案【详解】解:(1)由可设,∵,∴,∴,∴或(2)∵与的夹角为,∴,∴【点睛】本题考查向量的基本运算,属于简单题18、(1)见解析(2)1【解析】(1)设x1、x2∈R且x1<x2,用作差法,有f(x1)﹣f(x2)=,结合指数函数的单调性分析可得f(x1)﹣f(x2)<0,可得f(x)的单调性且与a的值无关;(2)根据题意,假设f(x)是奇函数,由奇函数的定义可得,f(﹣x)=﹣f(x),即a﹣=﹣(a﹣),对其变形,解可得a的值,即可得答案【详解】(1)证明:设x1、x2∈R且x1<x2,f(x1)﹣f(x2)=(a﹣)﹣(a﹣)=,又由y=2x在R上为增函数,则>0,>0,由x1<x2,可得﹣<0,则f(x1)﹣f(x2)<0,故f(x)为增函数,与a的值无关,即对于任意a,f(x)在R为增函数;(2)若f(x)为奇函数,且其定义域为R,必有有f(﹣x)=﹣f(x),即a﹣=﹣(a﹣),变形可得2a==2,解可得,a=1,即当a=1时,f(x)为奇函数【点睛】证明函数单调性的一般步骤:(1)取值:在定义域上任取,并且(或);(2)作差:,并将此式变形(要注意变形到能判断整个式子符号为止);(3)定号:判断的正负(要注意说理的充分性),必要时要讨论;(4)下结论:根据定义得出其单调性.19、(1)(x﹣3)2+(y﹣4)2=25(2)yx或x+y+57=0或x+y﹣57=0【解析】(1)设圆心C(a,b),半径为r,然后根据条件建立方程组求解即可;(2)分直线l经过原点、直线l不经过原点两种情况求解即可.【小问1详解】根据题意,设圆心C(a,b),半径为r,标准方程为(x﹣a)2+(y﹣b)2=r2,圆C经过点A(0,0),B(7,7),圆心在直线上,则有,解可得,则圆C的标准方程为(x﹣3)2+(y﹣4)2=25,小问2详解】若直线l与圆C相切且与x,y轴截距相等,分2种情况讨论:①直线l经过原点,设直线l的方程为y=kx,则有5,解得k,此时直线l的方程为yx;②直线l不经过原点,设直线l的方程为x+y﹣m=0,则有5,解得m=7+5或7﹣5,此时直线l方程为x+y+57=0或x+y﹣57=0;综合可得:直线l的方程为yx或x+y+57=0或x+y﹣57=020、(1)(2)【解析】(1)由题意可得,解不等式求出的取值范围,再利用基本不等式求的最小值;(2)不等式化为,比较和的大小,即可得出不等式的解集.【小问1详解】因为关于一元二次不等式的解集为,所以,化简可得:,解得:,所以,所以,当且仅当即,的最小值为.【小问2详解】不等式,可化为,因为,所以,所以该不等式的解集为.21、(1);(2)或.【解析】(1)根据题意,分离参数且利用对数型复合函数的单调性求得的值域,即可求得参数的取值范围;(2)根据是偶函数求得参数,再根据题意,求解指数方程即可求得的取值范围.【小问1详解】由题意知函数存零点,即有解.又,易知在上是减函数,又,,即,所以,所以的取值范围是.【小问2详解】的定义域为,若是偶函数,则,即解得.此时,,所以即为偶函数.又因为函数与的图象有且只有一个公共点,故方程只有一解,即方程有且只有一个实根令,则方程有且只有一个正根①当时,,不合题意,②当时,方程有两相等正根,则,且,解得,满足题意;③若一个正根和一个负根,则,即时,满足题意,综上所述:实数的取值范围为或.【点睛】本题考察利用函数奇偶性求参数值,以及对数方程的求解,对数型复合函数值域的求解,解决问题的关键是熟练的掌握对数函数的性质,属综合困难题.22、(1),平均数为岁
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【优化方案】2022届高三物理大一轮复习-第5章-第2节-动能-动能定理-教学讲义-
- 【导与练】2021高考地理总复习课时作业:第2章-第3课时-常见天气系统
- 互联网时代下的课程设计与教学实践
- 2021高考英语语法填空、阅读类训练(11)及答案(含短文改错)
- 【创新设计】2021高考物理二轮复习(江苏专用)题型通关-专练4
- 【优化方案】2021高考英语(外研版)总复习阶段综合检测(六)
- 【中学教材全解】2013-2020学年高中数学同步测试(人教A版-必修3)第一章-第一章-算法初步
- 四年级数学(四则混合运算带括号)计算题专项练习与答案
- 【ks5u发布】山东省菏泽市2020-2021学年高二上学期期中考试生物试题扫描版含答案
- 【全程复习方略】2020-2021学年北师大版高中数学必修一课时作业(二十一)-3.4.2
- 无缝钢管服务方案
- 排涝泵站养护方案范本
- XX医院临床医疗质量考核通用记录表
- 城市交通枢纽运营故障应急预案
- 料场加工施工方案
- 【浅析人工智能在石油行业中的应用3400字(论文)】
- 2023-2024学年上海市交大附中嘉定高二物理第一学期期末学业质量监测模拟试题含解析
- 湖北省十堰市竹山县2023-2024学年三上数学期末经典模拟试题含答案
- 产品试制前准备状态检查报告
- 某尾矿库闭库综合治理可研报告
- 人教版五年级语文上册期末试卷(含答案)
评论
0/150
提交评论