2023-2024学年安徽省芜湖市城南实验中学高一上数学期末复习检测模拟试题含解析_第1页
2023-2024学年安徽省芜湖市城南实验中学高一上数学期末复习检测模拟试题含解析_第2页
2023-2024学年安徽省芜湖市城南实验中学高一上数学期末复习检测模拟试题含解析_第3页
2023-2024学年安徽省芜湖市城南实验中学高一上数学期末复习检测模拟试题含解析_第4页
2023-2024学年安徽省芜湖市城南实验中学高一上数学期末复习检测模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年安徽省芜湖市城南实验中学高一上数学期末复习检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.已知方程的两根为与,则()A.1 B.2C.4 D.62.已知是两条不同直线,是三个不同平面,下列命题中正确的是()A.若则 B.若则C.若则 D.若则3.已知是第四象限角,是角终边上的一个点,若,则()A.4 B.-4C. D.不确定4.已知,,则的值等于()A. B.C. D.5.已知,且,则下列不等式恒成立的是()A. B.C. D.6.如图所示,在中,.若,,则()A. B.C. D.7.计算的值为A. B.C. D.8.下列各组函数中,表示为同一个函数的是A.与 B.与C.与 D.与且9.若实数,满足,则的最小值是()A.18 B.9C.6 D.210.为了鼓励大家节约用水,遵义市实行了阶梯水价制度,下表是年遵义市每户的综合用水单价与户年用水量的关系表.假设居住在遵义市的艾世宗一家年共缴纳的水费为元,则艾世宗一家年共用水()分档户年用水量综合用水单价/(元)第一阶梯(含)第二阶梯(含)第三阶梯以上A. B.C. D.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.以边长为2的正三角形的一条高所在直线为旋转轴,将该三角形旋转一周,所得几何体的表面积为__________12.幂函数的图象经过点,则________13.设x,.若,且,则的最大值为___14.如图,函数f(x)的图象为折线ACB,则不等式f(x)≥log2(x+1)的解集是________15.计算:()0+_____三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.在平面直角坐标系中,已知角α的始边为x轴的非负半轴,终边经过点P(-,)(Ⅰ)求cos(α-π)的值;(Ⅱ)若tanβ=2,求的值17.在平面直角坐标系xOy中,已知圆x2+y2-12x+32=0的圆心为Q,过点P(0,2)且斜率为k的直线l与圆Q相交于不同的两点A,B,记AB的中点为E(Ⅰ)若AB的长等于,求直线l的方程;(Ⅱ)是否存在常数k,使得OE∥PQ?如果存在,求k值;如果不存在,请说明理由18.在三棱锥中,和是边长为的等边三角形,,分别是的中点.(1)求证:平面;(2)求证:平面;(3)求三棱锥的体积.19.已知函数(1)若的定义域为,求实数的值;(2)若的定义域为,求实数的取值范围20.已知二次函数满足,且的最小值是求的解析式;若关于x的方程在区间上有唯一实数根,求实数m的取值范围;函数,对任意,都有恒成立,求实数t的取值范围21.已知角的顶点与原点重合,始边与轴的非负半轴重合,它的终边在直线上.(1)求的值;(2)求值

参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、D【解析】由一元二次方程的根与系数的关系得出两根的和与积,再凑配求解【详解】显然方程有两个实数解,由题意,,所以故选:D2、D【解析】A项,可能相交或异面,当时,存在,,故A项错误;B项,可能相交或垂直,当

时,存在,,故B项错误;C项,可能相交或垂直,当

时,存在,,故C项错误;D项,垂直于同一平面的两条直线相互平行,故D项正确,故选D.本题主要考查的是对线,面关系的理解以及对空间的想象能力.考点:直线与平面、平面与平面平行的判定与性质;直线与平面、平面与平面垂直的判定与性质.3、B【解析】利用三角函数的定义求得.【详解】依题意是第四象限角,所以,.故选:B4、B【解析】由题可分析得到,由差角公式,将值代入求解即可【详解】由题,,故选:B【点睛】本题考查正切的差角公式的应用,考查已知三角函数值求三角函数值问题5、D【解析】对A,C利用特殊值即可判断;对B,由对数函数的定义域即可判断,对D,由指数函数的单调性即可判断.【详解】解:对A,令,,则满足,但,故A错误;对B,若使,则需满足,但题中,故B错误;对C,同样令,,则满足,但,故C错误;对D,在上单调递增,当时,,故D正确.故选:D.6、C【解析】根据.且,,利用平面向量的加法,减法和数乘运算求解.【详解】因为.且,,所以,,,.故选:C7、D【解析】直接由二倍角的余弦公式,即可得解.【详解】由二倍角公式得:,故选D.【点睛】本题考查了二倍角的余弦公式,属于基础题.8、D【解析】A,B两选项定义域不同,C选项对应法则不同,D选项定义域和对应法则均相同,即可得选项.【详解】A.,,两个函数的定义域不同,不是同一函数,B.,,两个函数的定义域不同,不是同一函数,C.,两个的对应法则不相同,不是同一函数D.,,两个函数的定义域和对应法则相同是相同函数,故选D【点睛】此题是个基础题.本题考查函数的三要素:定义域、值域、对应关系,相同的函数必然具有相同的定义域、值域、对应关系.要使数与的同一函数,必须满足定义域和对应法则完全相同即可,注意分析各个选项中的个函数的定义域和对应法则是否相同,通常的先后顺序为先比较定义域是否相同,其次看对应关系或值域..9、C【解析】,利用基本不等式注意等号成立条件,求最小值即可【详解】∵,,∴当且仅当,即,时取等号∴的最小值为6故选:C【点睛】本题考查了利用基本不等式求和的最小值,注意应用基本不等式的前提条件:“一正二定三相等”10、B【解析】设户年用水量为,年缴纳税费为元,根据题意求出的解析式,再利用分段函数的解析式可求出结果.【详解】设户年用水量为,年缴纳的税费为元,则,即,当时,,当时,,当时,,所以,解得,所以艾世宗一家年共用水.故选:B二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、【解析】以边长为2的正三角形的一条高所在直线为旋转轴,将该三角形旋转一周,所得几何体为圆锥,圆锥的底面半径,母线长,该几何体的表面积为:.故答案为12、【解析】设幂函数的解析式,然后代入求解析式,计算.【详解】设,则,解得,所以,得故答案为:13、##1.5【解析】由化简得,再由基本不等式可求得,从而确定最大值【详解】,,,,,,,当且仅当时即取等号,,解得,故,故的最大值为,故答案为:14、{x|-1<x≤1}【解析】先作函数图象,再求交点,最后根据图象确定解集.【详解】令g(x)=y=log2(x+1),作出函数g(x)的图象如图由得∴结合图象知不等式f(x)≥log2(x+1)的解集为{x|-1<x≤1}【点睛】本题考查函数图象应用,考查基本分析求解能力.15、【解析】根据根式、指数和对数运算化简所求表达式.【详解】依题意,原式.故答案为:【点睛】本小题主要考查根式、指数和对数运算,考查化归与转化的数学思想方法,属于基础题.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(I);(II).【解析】由任意角三角函数的定义可得,,(Ⅰ)可求(Ⅱ)有,,利用诱导公式及同角基本关系即可化简求解【详解】解:由题意可得cosα=,sin,(Ⅰ)cos(α-π)=-cosα=,(Ⅱ)∵tanβ=2,tanα=,∴====【点睛】本题主要考查了三角函数的定义,同角基本关系的基本应用,属于基础试题.17、(Ⅰ)y=-+2或y=-x+2;(Ⅱ)不存在实数满足题意【解析】(Ⅰ)待定系数法,设出直线,再根据已知条件列式,解出即可;(Ⅱ)假设存在常数,将转化斜率相等,联立直线与圆,根据韦达定理,由直线与圆相交可求得范围.由斜率相等可求得的值,从而可判断结论【详解】(Ⅰ)圆Q的方程可写成(x-6)2+y2=4,所以圆心为Q(6,0)设过P(0,2)且斜率为k的直线方程为y=kx+2∵|AB|=,∴圆心Q到直线l的距离d==,∴=,即22k2+15k+2=0,解得k=-或k=-所以,满足题意的直线l方程为y=-+2或y=-x+2(Ⅱ)将直线l的方程y=x+2代入圆方程得x2+(kx+2)2-12x+32=0整理得(1+k2)x2+4(k-3)x+36=0.①直线与圆交于两个不同的点A,B等价于△=[4(k-3)2]-4×36(1+k2)=42(-8k2-6k)>0,解得-<k<0,即k的取值范围为(-,0)设A(x1,y1),B(x2,y2),则AB的中点E(x0,y0)满足x0==-,y0=kx0+2=∵kPQ==-,kOE==-,要使OE∥PQ,必须使kOE=kPQ=-,解得k=-,但是k∈(-,0),故没有符合题意的常数k【点睛】本题考查了圆的标准方程及弦长计算,还考查了直线与圆相交知识,直线平行知识,中点坐标公式,韦达定理的应用,考查了转化思想,属中档题18、(1)证明见解析;(2)证明见解析;(3).【解析】(1)欲证线面平行,则需证直线与平面内的一条直线平行.由题可证,则证得平面;(2)欲证线面垂直,则需证直线垂直于平面内的两条相交直线.连接,可证得,从而可证得平面;(3)由(2)可知,为三棱锥的高,平面为三棱锥的底面,应用椎体体积公式即可求解.【详解】(1)证明:分别是的中点,又平面,平面平面(2)如图,连接,,是的中点,同理又,又平面(3)由(2)可知,为三棱锥的高,且,.【点睛】本题考查线面平行,线面垂直的判定定理以及椎体体积公式的应用,考查空间想象能力与思维能力,属中档题.19、(1);(2)【解析】(1)根据题意,由二次型不等式解集,即可求得参数的取值;(2)根据题意,不等式在上恒成立,即可求得参数范围.【详解】(1)的定义域为,即的解集为,故,解得;(2)的定义域为,即恒成立,当时,,经检验满足条件;当时,解得,综上,【点睛】本题考查由函数的定义域求参数范围,涉及由一元二次不等式的解集求参数值,以及一元二次不等式在上恒成立问题的处理,属综合基础题.20、(1)(2)(3)【解析】(1)因,故对称轴为,故可设,再由得.(2)有唯一实数根可以转化为与有唯一的交点去考虑.(3),任意都有不等式成立等价于,分、、和四种情形讨论即可.解析:(1)因,对称轴为,设,由得,所以.(2)由方程得,即直线与函数的图象有且只有一个交点,作出函数在的图象.易得当或时函数图象与直线只有一个交点,所以的取值范围是.(3)由题意知.假设存在实数满足条件,对任意都有成立,即,故有,由.当时,在上为增函数,,所以;当时,,.即,解得,所以.当时,即解得.所以.当时,,即,所以,综上所述,,所以当时,使得对任意都有成立.点睛:(1)求二次函数的解析式,一般用待定系数法,有时也需要根据题设的特点合理假设二次函数的形式(如双根式、顶点式、一般式);(2)不等式对任意的恒成立可以等价转化为恒成立.21、(1)或;(2)或;【解析】(1)在直线上任取一点,由已知角的终边过点,利用

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论