2024届山东省青岛43中重点中学中考押题数学预测卷含解析_第1页
2024届山东省青岛43中重点中学中考押题数学预测卷含解析_第2页
2024届山东省青岛43中重点中学中考押题数学预测卷含解析_第3页
2024届山东省青岛43中重点中学中考押题数学预测卷含解析_第4页
2024届山东省青岛43中重点中学中考押题数学预测卷含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届山东省青岛43中重点中学中考押题数学预测卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1.如图,已知函数与的图象在第二象限交于点,点在的图象上,且点B在以O点为圆心,OA为半径的上,则k的值为A. B. C. D.2.下列运算正确的是()A.a2•a3=a6 B.()﹣1=﹣2 C.=±4 D.|﹣6|=63.如图,在△ABC中,AB=AC=10,CB=16,分别以AB、AC为直径作半圆,则图中阴影部分面积是()A.50π﹣48 B.25π﹣48 C.50π﹣24 D.4.如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,若AD=3,BE=1,则DE=()A.1 B.2 C.3 D.45.一、单选题点P(2,﹣1)关于原点对称的点P′的坐标是()A.(﹣2,1) B.(﹣2,﹣1) C.(﹣1,2) D.(1,﹣2)6.若ab<0,则正比例函数y=ax与反比例函数y=在同一坐标系中的大致图象可能是()A. B. C. D.7.如图,在⊙O中,直径AB⊥弦CD,垂足为M,则下列结论一定正确的是()A.AC=CD B.OM=BM C.∠A=∠ACD D.∠A=∠BOD8.青藏高原是世界上海拔最高的高原,它的面积是2500000平方千米.将2500000用科学记数法表示应为()A. B. C. D.9.某广场上有一个形状是平行四边形的花坛(如图),分别种有红、黄、蓝、绿、橙、紫6种颜色的花.如果有AB∥EF∥DC,BC∥GH∥AD,那么下列说法错误的是()A.红花、绿花种植面积一定相等B.紫花、橙花种植面积一定相等C.红花、蓝花种植面积一定相等D.蓝花、黄花种植面积一定相等10.如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,则图中相似三角形共有()A.1对 B.2对 C.3对 D.4对二、填空题(本大题共6个小题,每小题3分,共18分)11.从某玉米种子中抽取6批,在同一条件下进行发芽试验,有关数据如下:种子粒数100400800100020005000发芽种子粒数8531865279316044005发芽频率0.8500.7950.8150.7930.8020.801根据以上数据可以估计,该玉米种子发芽的概率为___________(精确到0.1).12.写出一个平面直角坐标系中第三象限内点的坐标:(__________)13.已知在Rt△ABC中,∠C=90°,BC=5,AC=12,E为线段AB的中点,D点是射线AC上的一个动点,将△ADE沿线段DE翻折,得到△A′DE,当A′D⊥AB时,则线段AD的长为_____.14.如图,直线与双曲线(k≠0)相交于A(﹣1,)、B两点,在y轴上找一点P,当PA+PB的值最小时,点P的坐标为_________.15.当﹣4≤x≤2时,函数y=﹣(x+3)2+2的取值范围为_____________.16.分解因式:___.三、解答题(共8题,共72分)17.(8分)如图1,已知扇形MON的半径为,∠MON=90°,点B在弧MN上移动,联结BM,作OD⊥BM,垂足为点D,C为线段OD上一点,且OC=BM,联结BC并延长交半径OM于点A,设OA=x,∠COM的正切值为y.(1)如图2,当AB⊥OM时,求证:AM=AC;(2)求y关于x的函数关系式,并写出定义域;(3)当△OAC为等腰三角形时,求x的值.18.(8分)在汕头市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,电子白板的价格是电脑的3倍,购买5台电脑和10台电子白板需要17.5万元,求每台电脑、每台电子白板各多少万元?19.(8分)如图,已知矩形ABCD中,连接AC,请利用尺规作图法在对角线AC上求作一点E使得△ABC∽△CDE.(保留作图痕迹不写作法)20.(8分)如图1,在平面直角坐标系xOy中,抛物线C:y=ax2+bx+c与x轴相交于A,B两点,顶点为D(0,4),AB=4,设点F(m,0)是x轴的正半轴上一点,将抛物线C绕点F旋转180°,得到新的抛物线C′.(1)求抛物线C的函数表达式;(2)若抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,求m的取值范围.(3)如图2,P是第一象限内抛物线C上一点,它到两坐标轴的距离相等,点P在抛物线C′上的对应点P′,设M是C上的动点,N是C′上的动点,试探究四边形PMP′N能否成为正方形?若能,求出m的值;若不能,请说明理由.21.(8分)在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动.(1)如图1,当点E在边DC上自D向C移动,同时点F在边CB上自C向B移动时,连接AE和DF交于点P,请你写出AE与DF的数量关系和位置关系,并说明理由;(2)如图2,当E,F分别在边CD,BC的延长线上移动时,连接AE,DF,(1)中的结论还成立吗?(请你直接回答“是”或“否”,不需证明);连接AC,请你直接写出△ACE为等腰三角形时CE:CD的值;(3)如图3,当E,F分别在直线DC,CB上移动时,连接AE和DF交于点P,由于点E,F的移动,使得点P也随之运动,请你画出点P运动路径的草图.若AD=2,试求出线段CP的最大值.22.(10分)如图,已知一次函数y=x+m的图象与x轴交于点A(﹣4,0),与二次函数y=ax1+bx+c的图象交于y轴上一点B,该二次函数的顶点C在x轴上,且OC=1.(1)求点B坐标;(1)求二次函数y=ax1+bx+c的解析式;(3)设一次函数y=x+m的图象与二次函数y=ax1+bx+c的图象的另一交点为D,已知P为x轴上的一个动点,且△PBD是以BD为直角边的直角三角形,求点P的坐标.23.(12分)如图1,2分别是某款篮球架的实物图与示意图,已知底座BC=0.60米,底座BC与支架AC所成的角∠ACB=75°,支架AF的长为2.50米米,篮板顶端F点到篮框D的距离FD=1.35米,篮板底部支架HF与支架AF所成的角∠FHE=60°,求篮框D到地面的距离(精确到0.01米).(参考数据:cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.732,,)24.已知:如图,在正方形ABCD中,点E、F分别是AB、BC边的中点,AF与CE交点G,求证:AG=CG.

参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解题分析】

由题意,因为与反比例函数都是关于直线对称,推出A与B关于直线对称,推出,可得,求出m即可解决问题;【题目详解】函数与的图象在第二象限交于点,点与反比例函数都是关于直线对称,与B关于直线对称,,,点故选:A.【题目点拨】本题考查反比例函数与一次函数的交点问题,反比例函数的图像与性质,圆的对称性及轴对称的性质.解题的关键是灵活运用所学知识解决问题,本题的突破点是发现A,B关于直线对称.2、D【解题分析】

运用正确的运算法则即可得出答案.【题目详解】A、应该为a5,错误;B、为2,错误;C、为4,错误;D、正确,所以答案选择D项.【题目点拨】本题考查了四则运算法则,熟悉掌握是解决本题的关键.3、B【解题分析】

设以AB、AC为直径作半圆交BC于D点,连AD,如图,∴AD⊥BC,∴BD=DC=BC=8,而AB=AC=10,CB=16,∴AD===6,∴阴影部分面积=半圆AC的面积+半圆AB的面积﹣△ABC的面积,=π•52﹣•16•6,=25π﹣1.故选B.4、B【解题分析】

根据余角的性质,可得∠DCA与∠CBE的关系,根据AAS可得△ACD与△CBE的关系,根据全等三角形的性质,可得AD与CE的关系,根据线段的和差,可得答案.【题目详解】∴∠ADC=∠BEC=90°.∵∠BCE+∠CBE=90°,∠BCE+∠CAD=90°,∠DCA=∠CBE,在△ACD和△CBE中,,∴△ACD≌△CBE(AAS),∴CE=AD=3,CD=BE=1,DE=CE−CD=3−1=2,故答案选:B.【题目点拨】本题考查了全等三角形的判定与性质,解题的关键是熟练的掌握全等三角形的判定与性质.5、A【解题分析】

根据“关于原点对称的点,横坐标与纵坐标都互为相反数”解答.【题目详解】解:点P(2,-1)关于原点对称的点的坐标是(-2,1).故选A.【题目点拨】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于原点对称的点,横坐标与纵坐标都互为相反数.6、D【解题分析】

根据ab<0及正比例函数与反比例函数图象的特点,可以从a>0,b<0和a<0,b>0两方面分类讨论得出答案.【题目详解】解:∵ab<0,∴分两种情况:(1)当a>0,b<0时,正比例函数y=ax数的图象过原点、第一、三象限,反比例函数图象在第二、四象限,无此选项;(2)当a<0,b>0时,正比例函数的图象过原点、第二、四象限,反比例函数图象在第一、三象限,选项D符合.故选D【题目点拨】本题主要考查了反比例函数的图象性质和正比例函数的图象性质,要掌握它们的性质才能灵活解题.7、D【解题分析】

根据垂径定理判断即可.【题目详解】连接DA.∵直径AB⊥弦CD,垂足为M,∴CM=MD,∠CAB=∠DAB.∵2∠DAB=∠BOD,∴∠CAD=∠BOD.故选D.【题目点拨】本题考查的是垂径定理和圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.8、C【解题分析】分析:在实际生活中,许多比较大的数,我们习惯上都用科学记数法表示,使书写、计算简便.解答:解:根据题意:2500000=2.5×1.故选C.9、C【解题分析】

图中,线段GH和EF将大平行四边形ABCD分割成了四个小平行四边形,平行四边形的对角线平分该平行四边形的面积,据此进行解答即可.【题目详解】解:由已知得题图中几个四边形均是平行四边形.又因为平行四边形的一条对角线将平行四边形分成两个全等的三角形,即面积相等,故红花和绿花种植面积一样大,蓝花和黄花种植面积一样大,紫花和橙花种植面积一样大.故选择C.【题目点拨】本题考查了平行四边形的定义以及性质,知道对角线平分平行四边形是解题关键.10、C【解题分析】∵∠ACB=90°,CD⊥AB,∴△ABC∽△ACD,△ACD∽CBD,△ABC∽CBD,所以有三对相似三角形.故选C.二、填空题(本大题共6个小题,每小题3分,共18分)11、1.2【解题分析】

仔细观察表格,发现大量重复试验发芽的频率逐渐稳定在1.2左右,从而得到结论.【题目详解】∵观察表格,发现大量重复试验发芽的频率逐渐稳定在1.2左右,∴该玉米种子发芽的概率为1.2,故答案为1.2.【题目点拨】考查利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.12、答案不唯一,如:(﹣1,﹣1),横坐标和纵坐标都是负数即可.【解题分析】

让横坐标、纵坐标为负数即可.【题目详解】在第三象限内点的坐标为:(﹣1,﹣1)(答案不唯一).故答案为答案不唯一,如:(﹣1,﹣1),横坐标和纵坐标都是负数即可.13、或.【解题分析】

①延长A'D交AB于H,则A'H⊥AB,然后根据勾股定理算出AB,推断出△ADH∽△ABC,即可解答此题②同①的解题思路一样【题目详解】解:分两种情况:①如图1所示:设AD=x,延长A'D交AB于H,则A'H⊥AB,∴∠AHD=∠C=90°,由勾股定理得:AB==13,∵∠A=∠A,∴△ADH∽△ABC,∴,即,解得:DH=x,AH=x,∵E是AB的中点,∴AE=AB=,∴HE=AE﹣AH=﹣x,由折叠的性质得:A'D=AD=x,A'E=AE=,∴sin∠A=sin∠A'=,解得:x=;②如图2所示:设AD=A'D=x,∵A'D⊥AB,∴∠A'HE=90°,同①得:A'E=AE=,DH=x,∴A'H=A'D﹣DH=x﹣=x,∴cos∠A=cos∠A'=,解得:x=;综上所述,AD的长为或.故答案为或.【题目点拨】此题考查了勾股定理,三角形相似,关键在于做辅助线14、(0,).【解题分析】试题分析:把点A坐标代入y=x+4得a=3,即A(﹣1,3),把点A坐标代入双曲线的解析式得3=﹣k,即k=﹣3,联立两函数解析式得:,解得:,,即点B坐标为:(﹣3,1),作出点A关于y轴的对称点C,连接BC,与y轴的交点即为点P,使得PA+PB的值最小,则点C坐标为:(1,3),设直线BC的解析式为:y=ax+b,把B、C的坐标代入得:,解得:,所以函数解析式为:y=x+,则与y轴的交点为:(0,).考点:反比例函数与一次函数的交点问题;轴对称-最短路线问题.15、-23≤y≤2【解题分析】

先根据a=-1判断出抛物线的开口向下,故有最大值,可知对称轴x=-3,再根据-4≤x≤2,可知当x=-3时y最大,把x=2时y最小代入即可得出结论.【题目详解】解:∵a=-1,

∴抛物线的开口向下,故有最大值,

∵对称轴x=-3,

∴当x=-3时y最大为2,

当x=2时y最小为-23,

∴函数y的取值范围为-23≤y≤2,故答案为:-23≤y≤2.【题目点拨】本题考查二次函数的性质,掌握抛物线的开口方向、对称轴以及增减性是解题关键.16、【解题分析】

先提取公因式,再利用平方差公式分解因式即可.【题目详解】故答案为:.【题目点拨】本题考查了分解因式,熟练掌握因式法、公式法、十字相乘法、分组分解法的区别,根据题目选择合适的方法是解题的关键.三、解答题(共8题,共72分)17、(1)证明见解析;(2).();(3).【解题分析】分析:(1)先判断出∠ABM=∠DOM,进而判断出△OAC≌△BAM,即可得出结论;(2)先判断出BD=DM,进而得出,进而得出AE=,再判断出,即可得出结论;(3)分三种情况利用勾股定理或判断出不存在,即可得出结论.详解:(1)∵OD⊥BM,AB⊥OM,∴∠ODM=∠BAM=90°.∵∠ABM+∠M=∠DOM+∠M,∴∠ABM=∠DOM.∵∠OAC=∠BAM,OC=BM,∴△OAC≌△BAM,∴AC=AM.(2)如图2,过点D作DE∥AB,交OM于点E.∵OB=OM,OD⊥BM,∴BD=DM.∵DE∥AB,∴,∴AE=EM.∵OM=,∴AE=.∵DE∥AB,∴,∴.()(3)(i)当OA=OC时.∵.在Rt△ODM中,.∵.解得,或(舍).(ii)当AO=AC时,则∠AOC=∠ACO.∵∠ACO>∠COB,∠COB=∠AOC,∴∠ACO>∠AOC,∴此种情况不存在.(ⅲ)当CO=CA时,则∠COA=∠CAO=α.∵∠CAO>∠M,∠M=90°﹣α,∴α>90°﹣α,∴α>45°,∴∠BOA=2α>90°.∵∠BOA≤90°,∴此种情况不存在.即:当△OAC为等腰三角形时,x的值为.点睛:本题是圆的综合题,主要考查了相似三角形的判定和性质,圆的有关性质,勾股定理,等腰三角形的性质,建立y关于x的函数关系式是解答本题的关键.18、每台电脑0.5万元;每台电子白板1.5万元.【解题分析】

先设每台电脑x万元,每台电子白板y万元,根据电子白板的价格是电脑的3倍,购买5台电脑和10台电子白板需要17.5万元列出方程组,求出x,y的值即可.【题目详解】设每台电脑x万元,每台电子白板y万元.根据题意,得:解得,答:每台电脑0.5万元,每台电子白板1.5万元.【题目点拨】本题考查了二元一次方程组的应用,解题的关键是读懂题意,找出之间的数量关系,列出二元一次方程组.19、详见解析【解题分析】

利用尺规过D作DE⊥AC,,交AC于E,即可使得△ABC∽△CDE.【题目详解】解:过D作DE⊥AC,如图所示,△CDE即为所求:【题目点拨】本题主要考查了尺规作图,相似三角形的判定,解决问题的关键是掌握相似三角形的判定方法.20、(1);(2)2<m<;(1)m=6或m=﹣1.【解题分析】

(1)由题意抛物线的顶点C(0,4),A(,0),设抛物线的解析式为,把A(,0)代入可得a=,由此即可解决问题;(2)由题意抛物线C′的顶点坐标为(2m,﹣4),设抛物线C′的解析式为,由,消去y得到,由题意,抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,则有,解不等式组即可解决问题;(1)情形1,四边形PMP′N能成为正方形.作PE⊥x轴于E,MH⊥x轴于H.由题意易知P(2,2),当△PFM是等腰直角三角形时,四边形PMP′N是正方形,推出PF=FM,∠PFM=90°,易证△PFE≌△FMH,可得PE=FH=2,EF=HM=2﹣m,可得M(m+2,m﹣2),理由待定系数法即可解决问题;情形2,如图,四边形PMP′N是正方形,同法可得M(m﹣2,2﹣m),利用待定系数法即可解决问题.【题目详解】(1)由题意抛物线的顶点C(0,4),A(,0),设抛物线的解析式为,把A(,0)代入可得a=,∴抛物线C的函数表达式为.(2)由题意抛物线C′的顶点坐标为(2m,﹣4),设抛物线C′的解析式为,由,消去y得到,由题意,抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,则有,解得2<m<,∴满足条件的m的取值范围为2<m<.(1)结论:四边形PMP′N能成为正方形.理由:1情形1,如图,作PE⊥x轴于E,MH⊥x轴于H.由题意易知P(2,2),当△PFM是等腰直角三角形时,四边形PMP′N是正方形,∴PF=FM,∠PFM=90°,易证△PFE≌△FMH,可得PE=FH=2,EF=HM=2﹣m,∴M(m+2,m﹣2),∵点M在上,∴,解得m=﹣1或﹣﹣1(舍弃),∴m=﹣1时,四边形PMP′N是正方形.情形2,如图,四边形PMP′N是正方形,同法可得M(m﹣2,2﹣m),把M(m﹣2,2﹣m)代入中,,解得m=6或0(舍弃),∴m=6时,四边形PMP′N是正方形.综上所述:m=6或m=﹣1时,四边形PMP′N是正方形.21、(1)AE=DF,AE⊥DF,理由见解析;(2)成立,CE:CD=或2;(3)【解题分析】试题分析:(1)根据正方形的性质,由SAS先证得△ADE≌△DCF.由全等三角形的性质得AE=DF,∠DAE=∠CDF,再由等角的余角相等可得AE⊥DF;(2)有两种情况:①当AC=CE时,设正方形ABCD的边长为a,由勾股定理求出AC=CE=a即可;②当AE=AC时,设正方形的边长为a,由勾股定理求出AC=AE=a,根据正方形的性质知∠ADC=90°,然后根据等腰三角形的性质得出DE=CD=a即可;(3)由(1)(2)知:点P的路径是一段以AD为直径的圆,设AD的中点为Q,连接QC交弧于点P,此时CP的长度最大,再由勾股定理可得QC的长,再求CP即可.试题解析:(1)AE=DF,AE⊥DF,理由是:∵四边形ABCD是正方形,∴AD=DC,∠ADE=∠DCF=90°,∵动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动,∴DE=CF,在△ADE和△DCF中,∴,∴AE=DF,∠DAE=∠FDC,∵∠ADE=90°,∴∠ADP+∠CDF=90°,∴∠ADP+∠DAE=90°,∴∠APD=180°-90°=90°,∴AE⊥DF;(2)(1)中的结论还成立,有两种情况:①如图1,当AC=CE时,设正方形ABCD的边长为a,由勾股定理得,,则;②如图2,当AE=AC时,设正方形ABCD的边长为a,由勾股定理得:,∵四边形ABCD是正方形,∴∠ADC=90°,即AD⊥CE,∴DE=CD=a,∴CE:CD=2a:a=2;即CE:CD=或2;(3)∵点P在运动中保持∠APD=90°,∴点P的路径是以AD为直径的圆,如图3,设AD的中点为Q,连接CQ并延长交圆弧于点P,此时CP的长度最大,∵在Rt△QDC中,∴,即线段CP的最大值是.点睛:此题主要考查了正方形的性质,勾股定理,圆周角定理,全等三角形的性质与判定,等腰三角形的性质,三角形的内角和定理,能综合运用性质进行推挤是解此题的关键,用了分类讨论思想,难度偏大.22、(1)B(0,1);(1)y=0.5x1﹣1x+1;(3)P1(1,0)和P1(7.15,0);【解题分析】

(1)根据y=0.5x+m交x轴于点A,进而得出m的值,再利用与y轴交于点B,即可得出B点坐标;(1)二次函数y=ax1+bx+c的图象与x轴只有唯一的交点C,且OC=1.得出可设二次函数y=ax1+bx+c=a(x﹣1)1,进而求出即可;(3)根据当B为直角顶点,当D为直角顶点时,分别利用三角形相似对应边成比例求出即可.【题目详解】(1)∵y=x+1交x轴于点A(﹣4,0),∴0=×(﹣4)+m,∴m=1,与y轴交于点B,∵x=0,∴y=1∴B点坐标为:

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论