人教版九年级数学上册 24.22 圆的切线证明方法(基础篇)(专项练习)_第1页
人教版九年级数学上册 24.22 圆的切线证明方法(基础篇)(专项练习)_第2页
人教版九年级数学上册 24.22 圆的切线证明方法(基础篇)(专项练习)_第3页
人教版九年级数学上册 24.22 圆的切线证明方法(基础篇)(专项练习)_第4页
人教版九年级数学上册 24.22 圆的切线证明方法(基础篇)(专项练习)_第5页
已阅读5页,还剩32页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题24.22圆的切线证明方法专题(基础篇)(专项练习)1.如图,AD是⊙O的弦,AB经过圆心O交⊙O于点C,∠A=∠B=30°,连接BD.求证:BD是⊙O的切线.2.如图,AB是⊙O的直径,点C在⊙O上,过点C的直线与AB延长线相交于点P.若∠COB=2∠PCB,求证:PC是⊙O的切线.3.如图,AD,BD是的弦,,且,点C是BD的延长线上的一点,,求证:AC是的切线.4.如图,点P是的直径延长线上的一点(),点E是线段的中点.在直径上方的圆上作一点C,使得.求证:是的切线.5.如图,在△ABC中,∠A=45°,以AB为直径的⊙O交于AC的中点D,连接CO,CO的延长线交⊙O于点E,过点E作EF⊥AB,垂足为点G.(1)求证:BC时⊙O的切线;(2)若AB=2,求线段EF的长.6.如图,是的直径,是的切线,切点为C,,垂足为E,连接.(1)求证:平分;(2)若,,求的长.7.如图,AB是⊙O的直径,弦CD⊥AB于点E,AM是△ACD外角∠DAF的平分线.(1)求证:AM是⊙O的切线.(2)若C是优弧ABD的中点,AD=4,射线CO与AM交于N点,求ON的长.8.如图,在△ABC中,AB=AC,O是边AC上的点,以OC为半径的圆分别交边BC、AC于点D、E,过点D作DF⊥AB于点F.(1)求证:直线DF是⊙O的切线;(2)若OC=1,∠A=45°,求劣弧DE的长.9.如图,已知△ABC内接于⊙O,点D在OC的延长线上,CD=CB,∠D=∠A(1)求证:BD是⊙O的切线;(2)若BC=2,求BD的长.10.已知:如图,AB是的直径,点C在上,BD平分ABC,AD=AE,AC与BD相交于点E.(1)求证:AD是的切线.(2)若AD=DE=2,求BC的长.11.如图,已知AB是⊙O的直径,BD是⊙O的弦,延长BD到C,使DC=BD,连接AC,过点D作DE⊥AC,垂足为E.(1)求证:AB=AC;(2)求证:DE是⊙O的切线;(3)若⊙O的半径为6,∠BAC=60°,则DE=________.12.已知AB是⊙O的直径,点C在AB的延长线上,AB=4,BC=2,P是⊙O上半部分的一个动点,连接OP,CP.(1)如图①,△OPC的最大面积是________;(2)如图②,延长PO交⊙O于点D,连接DB,当CP=DB时,求证:CP是⊙O的切线.13.如图,在中,,延长到点,以为直径作,交的延长线于点,延长到点,使.求证:是的切线;若,,,求的长.14.如图,AB是⊙O的直径,弦CD⊥AB于点E,且DC=AD.过点A作⊙O的切线,过点C作DA的平行线,两直线交于点F,FC的延长线交AB的延长线于点G.(1)求证:FG与⊙O相切;(2)连接EF,若AF=2,求EF的长.15.如图,Rt△ABC,∠ABC=90°,点O在AB上,AD⊥CO交CO延长线于点D,∠DAO=∠ACO,以点O为圆心,OB为半径作圆.(1)求证:AC是⊙O的切线;(2)已知,求OC的长?16.如图所示,AB为⊙O的直径,在△ABC中,AB=BC,AC交⊙O于点D,过点D作DE⊥BC,垂足为点E.(1)证明DE是⊙O的切线;(2)AD=8,P为⊙O上一点,P到弦AD的最大距离为8.①尺规作图作出此时的P点,保留作图痕迹;②求DE的长.17.如图,线段AB经过的圆心O,交圆O于点A,C,,AD为的弦,连接BD,,连接DO并延长交于点E,连接BE交于点M.(1)求证:直线BD是的切线;(2)求线段BM的长.18.如图,中,,点O在AC上,以OA为半径的半圆O分别交AB,AC于点D,E,过点D作半圆O的切线DF,交BC于点F.(1)求证:;(2)若,,求BF的长.19.如图,在Rt△AOB中,∠AOB=90°,⊙O与AB相交于点C,与AO相交于点E,连接CE,已知∠AOC=2∠ACE.(1)求证:AB为⊙O的切线;(2)若AO=20,BO=15,求AE的长.20.如图,内接于,是的直径,点是上一点,连接、,过点作,交的延长线于点,平分.(1)求证:是的切线;(2)若,的半径为6,求的长.21.如图,在Rt△ABC中,∠ABC=90°,∠BAC的平分线交BC于点O,D为AB上的一点,OD=OC,以O为圆心,OB的长为半径作⊙O.(1)求证:AC是⊙O的切线;(2)若AB=6,BD=2,求线段AC的长.22.如图,在△ABC中,AB=AC,以AB为直径的⊙O与BC相交于点D,过点D作DE⊥AC交AC于点E.(1)试判断直线DE与⊙O的位置关系,并说明理由;(2)若⊙O的半径为5,BC=16,求DE的长.23.如图,在中,,以为直径作,交于点,为的中点,连接并延长交的延长线于点.求证:是的切线;若,,求的半径.24.如图,AB为⊙O的直径,点C在⊙O上,点P在BA的延长线上,连接BC,OC,PC.若AB=6,的长为π.(1)求∠AOC的度数;(2)若BC=PC,求证:直线PC与⊙O相切.参考答案1.证明见分析【分析】连接OD,求出∠ODB=90°,根据切线的判定推出即可.解:如图,连接OD,∵OD=OA,∴∠ODA=∠DAB=30°,∴∠DOB=∠ODA+∠DAB=60°,∴∠ODB=180°﹣∠DOB﹣∠B=180°﹣60°﹣30°=90°,即OD⊥BD,∴直线BD与⊙O相切.【点拨】此题主要考查了切线的判定,三角形的内角和以及三角形的外角性质,关键是证明OD⊥BD.2.证明见分析.【分析】利用半径OA=OC可得∠COB=2∠A,然后利用∠COB=2∠PCB即可证得结论,再根据圆周角定理,易得∠PCB+∠OCB=90°,即OC⊥CP;故PC是⊙O的切线.解:连接AC,∵OA=OC,∴∠A=∠ACO.∴∠COB=2∠ACO.又∵∠COB=2∠PCB,∴∠ACO=∠PCB.∵AB是⊙O的直径,∴∠ACO+∠OCB=90°.∴∠PCB+∠OCB=90°,即OC⊥CP.∵OC是⊙O的半径,∴PC是⊙O的切线.【点拨】此题主要考查了圆的切线的判定及圆周角定理的运用,关键是利用半径OA=OC可得∠COB=2∠A.3.证明见分析.【分析】先由勾股定理的逆定理证明垂直,再由切线的判断进行解答即可.证明:连接AB,∵,且∴AB为直径,AB2=82+42=80,∵CD=2,AD=4∴AC2=22+42=20∵CD=2,BD=8,∴BC2=102=100∴,∴∴AC是的切线.【点拨】本题考查切线的判定,圆周角定理的推论,勾股定理的逆定理,解题关键是作出辅助线构造直角三角形.4.证明见分析【分析】连接OC,根据线段中点的定义得到OE=EP,求得OE=EC=EP,得到∠COE=∠ECO,∠ECP=∠P,利用三角形内角和定理求出,根据切线的判定定理即可得到结论.证明:连接,∵点E是线段的中点,∴,∵,∴,∴,,∵,∴,∴,∵是的半径,∴是的切线.【点拨】本题考查了切线的判定,等边对等角,三角形内角和定理,熟练掌握切线的判定定理是解题的关键.5.(1)证明参见分析;(2).试题分析:(1)连接BD,由圆周角性质定理和等腰三角形的性质以及已知条件证明∠ABC=90°即可;(2)根据AB=2,则圆的直径为2,所以半径为1,即OB=OE=1,利用勾股定理求出CO的长,再通过证明△EGO∽△CBO得到关于EG的比例式可求出EG的长,进而求出EF的长.解:(1)如图:连接BD,∵AB为⊙O的直径,∴∠ADB=90°,∴BD⊥AC,∵AD=CD,∴AB=BC,∴∠A=∠ACB=45°,∴∠ABC=90°,∴BC是⊙O的切线;(2)∵AB=2,∴BO=1,∵AB=BC=2,∴CO==,∵EF⊥AB,BC⊥AB,∴EF∥BC,∴△EGO∽△CBO,∴,∴,∴EG=,∴EF=2EG=.考点:1.切线的判定;2.相似三角形的判定与性质;3.勾股定理的运用.6.(1)详见分析;(2)【分析】(1)利用切线的性质得OC⊥DE,再证明OC∥BE得到∠OCB=∠CBE,加上∠OCB=∠CBO,所以∠OBC=∠CBE;(2)利用圆周角定理得到∠ACB=90°,再证明△OAC等边三角形得到AC=OA=2,再利用勾股定理可计算出BC=,然后在Rt△CBE中利用含30度的直角三角形三边的关系求CE的长.(1)证明:∵是的切线,∴,又∵,∴,∴,∴,即平分;(2)解:∵为的直径,∴,∵,∴是等边三角形,.∴,∴∵,且,∴.∴【点拨】本题考查了切线的性质:经过半径的外端且垂直于这条半径的直线是圆的切线;常常“遇到切点连圆心得半径”.7.(1)证明见分析;(2)ON=.【分析】(1)根据垂径定理得到AB垂直平分CD,根据线段垂直平分线的性质得到AC=AD,得到∠BAD=∠CAD,由AM是△ACD的外角∠DAF的平分线,得到∠DAM=∠FAD,于是得到结论;(2)证明△ACD是等边三角形,得到CD=AD=4,根据直角三角形的性质即可得到结论.(1)证明:∵AB是⊙O的直径,弦CD⊥AB于点E,∴AB垂直平分CD,∴AC=AD,∴∠BAD=∠CAD,∵AM是△ACD的外角∠DAF的平分线,∴∠DAM=∠FAD,∴∠BAM=(∠CAD+∠FAD)=90°,∴AB⊥AM,∴AM是⊙O的切线;(2)解:∵AC=AD,C是优弧ABD的中点,∴AC=AD=CD,∴△ACD是等边三角形,∴CD=AD=4,由(1)知AB垂直平分CD,则AB平分∴CE=DE=2,在中,设,则根据勾股定理得,即解得∴OC=OA=,∵∠ANO=∠OCE=30°,∴ON=2OA=.【点拨】本题是圆与三角形的综合题,涉及的知识点主要有切线的判定、垂径定理、等边三角形的判定与性质、直角三角形30度角的性质,灵活利用圆与三角形的相关性质是解题的关键.8.(1)详见分析;(2)π.【分析】(1)连结OD,根据等腰三角形的性质得到OD∥AB,根据平行线的性质得到∠ODF=90°,根据切线的判定定理证明;(2)根据平行线的性质得到∠AOD=180°﹣45°=135°,根据弧长公式计算即可.证明:如图,连结OD,∵AB=AC,∴∠B=∠ACB,∵OC=OD,∴∠ODC=∠ACB,∴∠B=∠ODC,∴OD∥AB,∵DF⊥AB,∴∠ODF=∠BFD=90°,∵OD为半径,∴直线DF是⊙O的切线;(2)解:∵∠A=45°,OD∥AB,∴∠AOD=180°﹣45°=135°,∴劣弧DE的长为.【点拨】本题主要考查了切线的判定及弧长的计算,熟练掌握切线的判定定理及弧长的计算公式是解题的关键.9.(1)见分析;(2)BD=2【分析】(1)由等腰三角形的性质得出∠CBD+∠OBC=90°,则∠OBD=90°,可得出结论;(2)证明△OBC为等边三角形,得出∠BOC=60°,根据直角三角形的性质可得出答案.(1)证明:∵OB=OC,∴∠OBC=∠OCB,∴∠BOC+2∠OBC=180°,∵∠BOC=2∠A,∴∠A+∠OBC=90°,又∵BC=CD,∴∠D=∠CBD,∵∠A=∠D,∴∠CBD+∠OBC=90°,∴∠OBD=90°,∴OB⊥BD,∴BD是⊙O的切线;(2)解:∵∠OBD=90°,∠D=∠CBD,∴∠OBC=∠BOC,∴OC=BC,又∵OB=OC,∴△OBC为等边三角形,∴∠BOC=60°,∵BC=2,∴OB=2,∴BD=2.【点拨】本题考查切线的判定,等腰三角形的性质,圆周角定理,直角三角形的性质,等边三角形的判定与性质,熟练掌握切线的判定是解题的关键.10.(1)见分析(2)【分析】(1)根据AB是的直径,可得C=90°,由BD平分ABC,可得CBD=ABD,根据AD=AE,可得CEB=DEA,进而可得BAD=90°,即可得证;(2)连接AF,根据等腰三角形的性质可得DF=DE=1,勾股定理求得,证明△AEF≌△BEC,即可求解.(1)∵AB是的直径,∴C=90°,∴CBE+CEB=90°,∵BD平分ABC,∴CBD=ABD,∵AD=AE,∴D=AED,∵CEB=DEA,∴ABD+D=CBE+CEB=90°,即BAD=90°,∴AD是⊙O的切线,(2)连接AF,如图,∵AB是的直径,∴AFB=90°,即,

∵AD=DE=2,∴DF=DE=1,

在中,AD=2,DF=1,∴AF==,∵DBA+D=EAB+DAE=90°,D=DAE=60°,∴DBA=EAB,∴AE=BE,

又AFE=C=90°,AEF=CEB,∴△AEF≌△BEC(AAS),

∴BC=AF=.【点拨】本题考查了直径所对的圆周角是直角,切线的判定,勾股定理,全等三角形的性质与判定,掌握以上知识是解题的关键.11.(1)见分析;(2)见分析;(3).【分析】(1)连接AD,由直径所对的圆周角度数及中点可证AD是BC的垂直平分线,根据线段垂直平分线的性质可得结论;(2)连接OD,由中位线的性质可得OD∥AC,由平行的性质与切线的判定可证;(3)易知是等边三角形,由等边三角形的性质可得CB长及度数,利用直角三角形30度角的性质及勾股定理可得结果.解:(1)连接AD.∵AB是⊙O的直径,∴∠ADB=90°.又∵DC=BD,AD是BC的垂直平分线∴AB=AC.(2)连接OD.∵DE⊥AC,∴∠CED=90°.∵O为AB中点,D为BC中点,∴OD∥AC.∴∠ODE=∠CED=90°.∴DE是⊙O的切线.(3)由(1)得是等边三角形在中,根据勾股定理得【点拨】本题考查了圆与三角形的综合,涉及的知识点主要有圆的切线的判定、圆周角定理的推论、垂直平分线的性质、等边三角形与直角三角形的性质,灵活的将图形与已知条件相结合是解题的关键.12.(1)4(2)见分析【分析】(1)因为OC长度确定,所以当点P到OC的距离最大时△OPC的面积最大,当OP⊥OC时,当点P到OC的距离最大,等于圆O的半径,求出此时的△OPC的面积即可;(2)连接AP,BP,利用同圆中,相等的圆心角所对的弦相等,可得AP=DB,因为CP=DB,所以AP=CP,可证△APB≌△CPO(SAS),得到∠OPC=90°,即可证明CP是切线.(1)解:∵AB=4,∴OB=2,OC=OB+BC=4.在△OPC中,设OC边上的高为h,∵S△OPCOC•h=2h,∴当h最大时,S△OPC取得最大值.作PH⊥OC,如图①,则,当OP⊥OC时,,此时h最大,如答图1所示:此时h=半径=2,.∴△OPC的最大面积为4,故答案为:4.(2)证明:如答图②,连接AP,BP.∵∠AOP=∠BOD,∴AP=BD,∵CP=DB,∴AP=CP,∴∠A=∠C,在△APB与△CPO中,,∴△APB≌△CPO(SAS),∴∠APB=∠OPC,∵AB是直径,∴∠APB=90°,∴∠OPC=90°,∴DP⊥PC,∵DP经过圆心,∴PC是⊙O的切线.【点拨】本题考查了圆,熟练掌握圆的半径、切线、弦与圆心角的关系等知识是解题的关键.13.(1)见分析(2)13【分析】(1)连接,根据等边对等角可得,,根据对顶角相等,等量代换后可得即可得证;(2)过点作,根据垂径定理可得,由,证明,可得,根据即可求解.(1)如图,连接,中,,,,,,,,,,即,是半径,是的切线;(2)如图,过点作,,,,,,在与中,,,,【点拨】本题考查了切线的判定定理,垂径定理,掌握以上知识是解题的关键.14.(1)见分析(2)【分析】(1)连接OC,AC.先证明△ACD为等边三角形.可得∠ACO=∠OAC=30°.再由FG∥DA,可得∠ACF=∠DAC=60°.从而得到∠OCF=90°.即可求证;(2)根据AD∥FG,可得∠AGF=∠DAE=30°.再根据直角三角形的性质可得FG=2AF=4,.再证得△ADE≌△GCE.可得AE=GE=.然后由勾股定理,即可求解.(1)证明:连接OC,AC.∵AB是⊙O的直径,CD⊥AB,∴CE=DE,AD=AC.∵DC=AD,∴DC=AD=AC.∴△ACD为等边三角形.∴∠D=∠DCA=∠DAC=60°.∴∠AOC=30°,∵OA=OC,∴∠ACO=∠OAC=30°.∵FG∥DA,∴∠ACF=∠DAC=60°.∴∠OCF=90°.∴OC⊥FG.∵OC为半径,∴FG与⊙O相切.(2)解:∵AD∥FG,∴∠AGF=∠DAE=30°.∵AF为⊙O的切线,∴∠FAG=90°,∴FG=2AF=4,∴.在△ADE和△GCE中,∵∠AGF=∠DAE=30°.∠CEG=∠AED,DE=CE,∴△ADE≌△GCE.∴AE=GE=.∴.【点拨】本题主要考查了垂径定理,切线的性质和判定,直角三角形的性质,等边三角形的判定和性质,全等三角形的判定和性质,勾股定理,熟练掌握垂径定理,切线的性质和判定,直角三角形的性质,等边三角形的判定和性质,全等三角形的判定和性质是解题的关键.15.(1)见分析(2)【分析】(1)证明∠BCO=∠ACO,推出OE=OB,即可证明AC是⊙O的切线;(2)证明△OBC≌△OEC,利用勾股定理求得AC=10,在Rt△AOE中,利用勾股定理列式计算可求得圆的半径,进一步求解即可.(1)证明:作OE⊥AC,垂足为E,∵AD⊥CO,∴∠ADO=90°,∴∠ADO=∠ABC=90°,∵∠AOD=∠BOC,∴∠DAO=∠BCO,∵∠DAO=∠ACO,∴∠BCO=∠ACO,∵OB⊥BC,OE⊥AC,∵OE=OB,∵OB是半径,∴AC是⊙O的切线;(2)解:∵OBC=∠OEC,∠BCO=∠ACO,OC=CO,∴△OBC≌△OEC,∴BC=EC=6,在Rt△ABC中,,∴AE=AC−EC=10−6=4,在Rt△AOE中,设半径为R,∵AE2+OE2=OA2,∴42+R2=(8−R)2,∴R=OC=3,∴在Rt△OBC中,.【点拨】本题考查了切线的判定和性质,勾股定理,全等三角形的判定和性质,熟练掌握切线的判定和性质是解题的关键.16.(1)见分析(2)①见分析;②DE=4.8【分析】(1)连接OD、BD,求出BD⊥AC,可得AD=DC,根据三角形的中位线得出OD∥BC,推出OD⊥DE,根据切线的判定推出即可;(2)①利用垂径定理作出AD的垂直平分线即可;②根据垂径定理以及勾股定理求得⊙O的半径和FO,再根据中位线中位线定理求得BD,然后根据三角形面积公式即可求解.(1)证明:连接OD,BD,∵AB为⊙O的直径,∴BD⊥AD,又∵AB=BC,△ABC是等腰三角形,∴BD又是AC边上的中线,∴OD是△ABC的中位线,∴OD∥BC,又DE⊥BC,∴DE⊥OD,∵OD是⊙O的半径,∴DE是⊙O的切线;(2)解:①如图,作AD的垂直平分线与☉O相交于点P,点P即为所求.②如图,AD的垂直平分线与AD相交于点F,连接BD,∵PF⊥AD,∴AF=AD=4,设☉O的半径为r,在Rt△AFO中,AF2+FO2=AO2,即42+(8−r)2=r2,解得r=5.∴FO=PF−PO=3,∵FO是△ABD的中位线,∴BD=2FO=6,∵AB为⊙O的直径,∴BD⊥AC,又∵AB=BC,△ABC是等腰三角形,∴AD=DC=8,∴BC=AB=10,在Rt△BDC中,S△BDC=BD⋅CD=BC⋅DE,∴DE=4.8.【点拨】本题考查了切线的判定和性质,等腰三角形的性质,垂径定理,勾股定理,三角形中位线等知识点的综合运用.17.(1)见分析(2)【分析】(1)根据圆周角定理可得,从而得到,即可求证;(2)连接DM,Rt△BOD中,根据直角三角形的性质可得

BO=2OD,从而得到,,再由的直径,可得,,从而得到,再由,可得,再由勾股定理,即可求解.(1)证明:∵∠BOD=2∠BAD,∴,

又∵,∴,即,又∵为的半径,∴直线BD是的切线;(2)解:如图,连接DM,Rt△BOD中,,∴,

又,,∴,∴,∵的直径,∴,,在Rt△BDE中,,∵,

∴,在Rt△BDM中,.【点拨】本题主要考查了切线的判定,圆周角定理,直角三角形的性质,勾股定理等知识,熟练掌握切线的判定,圆周角定理,直角三角形的性质,勾股定理是解题的关键.18.(1)见分析(2)7【分析】(1)连接OD,得到,利用余角的性质得到,得出结果;(2)连接OF,构造直角三角形,利用勾股定理求解.(1)证明:连接OD,如图,∵半圆O的切线DF,∴.∴.∵,∴.∵,∴.∴.∴.(2)解:连接OF.∵,,∴.∵,,∴.又∵,∴.【点拨】本题考查切线的性质、等腰三角形的判定以及勾股定理,遇切线连接圆心和切点时解决问题的关键.19.(1)见分析(2)8【分析】(1)根据OC=OE,得到∠OCE=∠OEC,再根据∠AOC=2∠ACE,得到∠OCA=∠OCE+∠ACE=(∠OCE+∠OEC+∠AOC)==90°,即有OC⊥AB,结论得证;(2)利用勾股定理求出AB,在根据三角形的面积的不同算法可求出OC,即AE可求.(1)证明:∵OC=OE,∴∠OCE=∠OEC,∵∠AOC=2∠ACE,∴∠OCA=∠OCE+∠ACE=(∠OCE+∠OEC+∠AOC)==90°,∴OC⊥AB,∴AB为⊙O的切线;(2)∵AO=20,BO=15,∴,∵,即,∴OC=12,∴AE=OA﹣OE=20﹣12=8.【点拨】本题考查了切线的判定与性质、勾股定理以及三角形面积的知识,利用勾股定理解直角三角形是解答本题的关键.20.(1)见分析;(2).【分析】(1)根据切线的判定定理证明即可;(2)证明是等边三角形,利用所对的直角边等于斜边的一半证明,再由勾股定理,得.(1)证明:连接.∵,∴.∵平分,∴,∴.∴,∴,即,又∵是的半径,∴是的切线.(2)解:,∴.又∵,∴是等边三角形,∴,,∴,∴.由勾股定理,得.【点拨】本题考查切线的判定定理,等边三角形的判定及性质,所对的直角边等于斜边的一半,勾股定理,解题的关键是熟练掌握以上知识点.21.(1)见分析(2)8【分析】(1)过O作OE⊥AC于E,先证Rt△ABO≌Rt△AEO,OB=OE,即OE为圆的半径,即可求证;(2)利用切线的性质可得AB=AE,再证Rt△BOD≌Rt△COE,即有BD=CE=2,则AC可求.(1)证明:过O作OE⊥AC于E.∵AO平分∠BAC,且∠ABC=90°,OE⊥AC,∴OB=OE,即OE为圆的半径,∴AC是⊙O的切线;(2)∵∠ABC=90°,OB为⊙O半径,∴AB是⊙O的切线,又由(1)AC是⊙O的切线,∴AB=AE=6,在Rt△BOD和Rt△COE中,,∴Rt△BOD≌Rt△COE,∴BD=CE=2,∴AC=AE+CE=8【点拨】本题考查了切线的判定与性质,角平分线的性质定理,在OE⊥AC的条件下证得OE为圆的半径是解答本题的关键.22.(1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论