2021年【通用版】高考物理训练《万有引力定律》(含解析)_第1页
2021年【通用版】高考物理训练《万有引力定律》(含解析)_第2页
2021年【通用版】高考物理训练《万有引力定律》(含解析)_第3页
2021年【通用版】高考物理训练《万有引力定律》(含解析)_第4页
2021年【通用版】高考物理训练《万有引力定律》(含解析)_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

【通用版】为考麴理专题利秣

专题:万有引力定律

第一部分名师综述

万有引力定律是高考的必考内容,也是高考命题的一个热点内容。考生要熟练掌握该定律的内容,还要知

道其主要应用,要求能够结合该定律与牛顿第二定律估算天体质量、密度、计算天体间的距离(卫星高度)、

以及分析卫星运动轨道等相关问题。由于高考计算题量减少,故本节命题应当会以选择题为主,难度较以

前会有所降低。本章核心内容突出,主要考察人造卫星、宇宙速度以及万有引力定律的综合应用,与实际

生活、新科技等结合的应用性题型考查较多。

第二部分精选试题

一、单选题

1.小型登月器连接在航天站上,一起绕月球做圆周运动,其轨道半径为月球半径的3倍,某时刻,航天站

使登月器减速分离,登月器沿如图所示的椭圆轨道登月,在月球表面逗留一段时间完成科考工作后,经快

速启动仍沿原椭圆轨道返回,当第一次回到分离点时恰与航天站对接,登月器快速启动所用的时间可以忽

略不计,整个过程中航天站保持原轨道绕月运行,不考虑月球自转的影响,则下列说法正确的是()

A.从登月器与航天站分离到对接,航天站至少转过半个周期

B.从登月器与航天站分离到对接,航天站至少转过2个周期

C.航天站做圆周运动的周期与登月器在椭圆轨道上运动的周期之比为后

D.航天站做圆周运动的周期与登月器在椭圆轨道上运动的周期之比为可

O

【答案】c

【解析】

【详解】

航天站的轨道半径为3R,登月器的轨道半长轴为2R,由开普勒第三定律可知,航天站做圆周运动的周期与

登月器在椭圆轨道上运动的周期之比为:2=5=后从登月器与航天站分离到对接,登月器的运动的

时间为一个周期T,登月器可以在月球表面逗留的时间为t,使登月器仍沿原椭圆轨道回到分离点与航天飞

机实现对接,t+T=n「,则n>}=品,n取整数,即n至少为1,这一时间要大于航天站的半个周

期,而登月器在月球上要逗留一段时间,其值不知,即无法确定时间大小,则AB错误;航天站做圆周运动

的周期与登月器在椭圆轨道上运动的周期之比为:*=君=器,则C正确,D错误;故选C。

2.如图,拉格朗日点L位于地球和月球连线上,处在该点的物体在地球和月球引力的共同作用下,可与月

球一起以相同的周期绕地球运动.据此,科学家设想在拉格朗日点L建立空间站,使其与月球同周期绕地

球运动.以以、检分别表示该空间站和月球向心加速度的大小,金表示地球同步卫星向心加速度的大小.以

下判断正确的是()

地球

A.a2>a3>a1B.a2>ai>a3C.a3>a1>a2D.a3>a2>a]

【答案】D

【解析】

【详解】

空间站与月球绕地球同周期运动,据a=(等)2r可得,空间站向心加速度a】比月球向心加速度a2小,即a1<a2.

地球同步卫星和月球均是地球对它们,的万有引力充当向心力,即G,=ma,地球同步卫星到地心的距离小于

月球到地心的距离;则a3>a2.综上,a3>a2>a1;故D项正确,ABC三项错误。

3.A为静止于地球赤道上的物体、B为近地卫星、C为地球同步卫星,地球表面的重力加速度为g,关于它

们运行线速度V、角速度3、周期T和加速度a的比较正确的是()

■、

A.vA>vB>vc

B.wA>wB>G)c

C.TC>TB>TA

D.3B3c>>HA

【答案】D

【解析】

【详解】

卫星C与A具有相等的角速度,A的半径小于C的半径,根据v=3r知vA〈vC,根据万有引力提供向心力,

有谓初£得v=性,近地卫星B轨道半径小于同步卫星C的轨道半径vB〉vC,故有vB>vC>vA,故A错误;

卫星C与A具有相等的角速度,即3A=3C;根据万有引力提供向心力,有G^=mr32,得3=写,近地

卫星B轨道半径小于同步卫星C的轨道半径,3B>3C,故有3B>3A=3C,故B错误;卫星C为同步卫

星,周期与A物体周期相等,TC=TA;,根据万有引力提供向心力G$=m^r,得T=2"/,近地卫星B

轨道半径小于同步卫星C的轨道半径,所以TBVTC,故有TB〈TC=TA,故C错误;卫星C与A具有相等的角

速度,A的半径小于C的半径,根据a=32r知aA<aC,根据万有引力提供向心力,有G^=ma,得a=,

近地卫星B轨道半径小于同步卫星C的轨道半径,所以aB>aC,故有aB>aC>aA,故D正确;故选D。

4.某地区的地下发现天然气资源,如图所示,在水平地面〃点的正下方有一球形空腔区域内储藏有天然气.假

设该地•区岩石均匀分布且密度为。,天然气的密度远小于。,可忽略不计.如果没有该空腔,地球表面正

常的重力加速度大小为g;由于空腔的存在,现测得一点处的重力加速度大小为纭(尔1).已知引力常量为

G,球形空腔的球心深度为4则此球形空腔的体积是()

A.----B.-----C.—D.

【答案】D

【解析】

【详解】

地球表面正常的重力加速度大小为g,由于空,腔的存在,现测得P点处的重力加速度大小为kg,则空腔体积

大小的岩石对物体吸引产生的加速度为(l-k)g,结合万有引力定律G£=ma,即G竽=m(l-k)g,解得:

V="也,故D项正确,ABC错误。

5.我国航天技术走在世界的前列,探月工程“绕、落、回”三步走的最后一步即将完成,即月球投测器实

现采样返回。如图所示为该过程简化后的示意图,探测器从圆轨道1上的A点减速后变轨到椭圆轨道2,之

后又在轨道2上的B点变轨到近月圆轨道3。已知探测器在轨道1上的运行周期为「,0为月球球心,C为

轨道3上的一点,AC与A0之间的最大夹角为0。下列说法正确的是()

A.探测器在轨道2运行-时•的机械能大于在轨道1运行时的机械能

B.探测器在轨道1、2、3运行时的周期大小关系为「<丁2〈丁3

C.探测器在轨道2上运行和在圆轨道1上运行,加速度大小相等的位置有两个

D.探测器在轨道3上运行时的周期为标得「

【答案】D

【解析】

【分析】

根据题中“圆轨道1…椭圆轨道2,…近月圆轨道3”可知,本题考察一般人造卫星问题。根据人造卫星的

运动规律,运用万有引力定律、牛顿第二定律、向心力、开普勒第三定律等知识分析推断。

【详解】

A:探测器从圆轨道1上的A点减速后变轨到椭圆轨道2,探测器在轨道2运行时的机械能小于在轨道1运

行时的机械能。故A项错误。

B:探测器在轨道1、2、3运行的半径(半长轴)关系为:rt>a2>r3,据开普勒第三定律得,探测器在轨道

1、2、3运行时的周期大小关系为「>12>13。故B项错误。

C:据牛顿第二定律可得,G^=ma;所以探测器在轨道2上运行和在圆轨道1上运行加速度大小相等的位

置只有一个。故C项错误。

D:据几何关系可得,&=sinO;据开普勒第三定律辞=§,解得:丁3=历可「。故D项正确。

6.八2为相距遥远的两颗行星,距各自表面相同高度处各有一颗卫星八2做匀速圆周运动,图中

纵坐标表示行星对周围空间各处物体的引力产生的加速度a,横坐标表示物体到行星中心的距离r的平方,

两条曲线分别表示八2周围的a与2的反比关系,它们左端点横坐标相同,贝I")

A.八2的平均密度相等

B./的第一宇宙速度比2的小

C./的公转周期比2的大

D./的向心加速度比2的大

【答案】D

【解析】

【详解】

根据牛顿第二定律,行星对周围空间各处物体的引力产生的加速度为:a=^,它们左端点横坐标相同,所

以Pl、P2的半径相等,结合a与r2的反比关系函数图象得出P1的质量大于P2的质量,根据P=

所以P1的平均密度比P2的大,故A错误;第一宇宙速度v=J*所以Pl的“第一宇宙速度”比P2的大,

故B错误;根据根据万有引力提供向心力得出周期表达式T=2n源,所以si的公转周期比s2的小,故C

错误;si、s2的轨道半径相等,根据a1?,所以si的向心加速度比s2的大,故D正确;故选D。

【点睛】

解决本题的关键掌握万有引力提供向心力这一理论,知道线速度、角速度、周期、加速度与轨道半径的关

系,并会用这些关系式进行正确的分析和计算.该题还要求要有一定的读图能力和数学分析能力,会从图

中读出一些信息.就像该题,能知道两个行星的半径是相等的.

7.我国继嫦娥三号之后将于2018年发射嫦娥四号,它将首次探秘月球背面,实现人类航天器在月球背面的

首次着陆。为“照亮"嫦娥四号”驾临"月球背面之路,一颗承载地月中转通信任务的中继卫星将在嫦娥四

号发射前半年进入到地月拉格朗日2点。在该点,地球、月球和中继卫星位于同一直线上,且中继卫星绕

地球做圆周运动的周期与月球绕地球做圆周运动的周期相同,则()

A.中继卫星的周期为一年

B.中继卫星做圆周运动的向心力仅由地球提供

C.中继卫星的线速度小于月球运动的线速度

D.中继卫星的加速度大于月球运动的加速度

【答案】D

【解析】A、中继卫星的周期与月球绕地球运动的周期相等都为一个月,故A错

B、卫星的向心力由月球和地球引力的合力提供,则B错误.

C、卫星与地球同步绕地球运动,角速度相等,根据v=3r,知卫星的线速度大于月球的线速度.故C错误

D、根据a=川2「知,卫星的向心加速度大于月球的向心加速度,故D正确;

故选D

点睛:卫星与月球同步绕地球运动,角速度相等,卫星靠地球和月球引力的合力提供向心力,根据v=ar,a=

32r比较线速度和向心加速度的大小

8.科技日报北京2017年9月6日电,英国《自然•天文学》杂志发表的一篇论文称,某科学家在银河系

中心附近的一团分子气体云中发现了一个黑洞。科学研究表明,当天体的逃逸速度(即第二宇宙速度,为第

一宇宙速度的近倍)超过光速时,该天体就是黑洞。己知某天体与地球的质量之比为鼠地球的半径为R,

地球卫星的环绕速度(即第一宇宙速度)为%,光速为c,则要使该天体成为黑洞,其半径应小于

【答案】B

【解析】地球的第一宇宙速度:詈="1千;

该天体成为黑洞时其半径为r,第一宇宙速度为v2,粤=n)W;

r"r

C=V2V2

联立解得:r=峥,故B正确;

故选B

9.我国于2017年11月发射“嫦娥五号”探月卫星,计划执行月面取样返回任务。“嫦娥五号”从月球返

回地球的过程可以简单分成四步,如图所示第一步将“嫦娥五号”发射至月球表面附近的环月圆轨道I,

第二步在环月轨道的{处进行变轨进入月地转移轨道H,第三步当接近地球表面附近时,又一次变轨,从8

点进入绕地圆轨道III,第四步再次变轨道后降落至地面,下列说法正确的是()

A.将“嫦娥五号”发射至轨道I时所需的发射速度为7.9km/s

B.“嫦娥五号”从环月轨道I进入月地转移轨道n时需要加速

C.“嫦娥五号”从力沿月地转移轨II到达6点的过程中其动能一直增加

D.“嫦娥五号”在第四步变轨时需要加速

【答案】B

【解析】

A、月球的第一宇宙速度比地球的要小,故A错误;

B、“嫦娥五号”从轨道I进入月地转移轨道H是离心运动,所以需要加速,所以B选项是正确的;

B、刚开始的时候月球对“嫦娥五号”的引力大于地球对“嫦娥五号”的引力,所以动能要减小,之后当地球

的引力大于月球的引力时,卫星的动能就开始增加,故C错误;

D、“嫦娥五号”降落至地面的运动为向心运动,需要减速,故D错误.

综上所述本题答案是:B

点睛:第一宇宙速度是在星球表面发射飞行器的最小发射速度;圆周运动的卫星加速后做离心运动,减速后

做向心运动.

10.宇宙中有两颗相距无限远的恒星SI、S2,半径均为Z下图分别是两颗恒星周围行星的公转周期7与公

转半径/的图像,则

A.恒星斗的质量大于恒星sz的质量

B.恒星Si的密度小于恒星Sz的密度

C.恒星si的第一宇宙速度大于恒星s2的第一宇宙速度

D.距两恒星表面高度相同的行星,的行星向心加速度较大

【答案】B

【解析】A、由题图可知,当绕恒星运动的行星的环绕半径相等时,S1运动的周期比较大,根据公式:

「Min4乃2,,4//

G—-=IH——rM=-------

厂「,所以:GT,周期越大则质量越小.所以恒星S1的质量小于恒星S2的质量.故

A错误;B、两颗恒星的半径相等,则根据M=PV,半径R0相等则它们的体积相等,所以质量大S2的密度

Minmv2\GM

G——=m-----v=.I-----

大.故B正确.C、根据万有引力提供向心力,则:厂r,所以:Vr,由于恒星si的

质量小于恒星S2的质量,所以恒星S1的第一宇宙速度小于恒星S2的第一宇宙速度.故C错误.I)、距两

恒星表面高度相同的行星,如图当它们的轨道半径相等时,S1的周期大于恒星S2的周期,它们的向心加速

4万2

a=~^Tr

度a:T,所以S1的行星向心加速度较小.故D错误.故选B.

【点睛】该题考查万有引力定律的应用,由于两个恒星的半径均为R0,又可以根据图象,结合万有引力定

律比较半径和周期之间的关系.当然也可以结合开普勒第三定律分析半径与周期之间的关系.

二、多选题

11.2018年5月4日中国成功发射“亚太6广’通讯卫星。如图所示为发射时的简易轨道示意图,先将卫星

送入近地圆轨道I,当卫星进入赤道上空夕点时.,控制火箭点火,进入椭圆轨道II,卫星到达远地点。时,

再次点火,卫星进入相对地球静止的轨道HI,已知夕点到地心的距离为力,0点到地心的距离为〃,地球的

半径为A,地球表面的重力加速度为g,规定无穷远处引力势能为零,质量为〃的物体在距地心r处的引力

2

势能瓦=/——下列说法正确的是()

A.轨道n上卫星在一点的速度与卫星在。点的速度之比为一=一

B.卫星在轨道I上的速度,与在轨道III上速度,之比为,=一

3

2

C.卫星在轨道HI上的机械能为=———

D.卫星在轨道I上的运动周期为——

【答案】ABC

【解析】

【详解】

根据开普勒第二定律可知卫星在轨道【【在相同的时间内卫星与地球的连线扫过的面积相等,设时间间隔为

△t,则在P点与Q点附近有:|vPAt-h=|vQAt-H,可得上=!,故A正确;卫星在轨道I上与在轨道HI

N,VQn

上运行时,万有引力提供向心力,由牛顿第二定律有G==mE,得线速度为v=户,故可得卫星在轨道I

上的速度vi与在轨道in上速度v3之比为"=故B正确;卫星在轨道ni上的引力势能为Ep=-滓=-#,

\r3hHH

卫星在轨道HI上的动能为Ek=gmv2="?=^,故卫星在轨道HI上的机械能为E=Ep+Ek=-穿,故C

正确;由丁=咛可得周期为T=后浮,故D错误。故选ABC。

12.如图所示,48两卫星绕地球运行,运动方向相同,此时两卫星距离最近,其中/是地球同步卫星,

轨道半径为八地球可看成质量均匀分布的球体,其半径为兄自转周期为7:若经过时间t后,/、8第一

次相距最远,下列说法正确的有

A23

A.在地球两极,地表重力加速度是

B.卫星6的运行周期是J-

C.卫星6的轨道半径为是1三7

1).若卫星6通过变轨与A对接之后,B的机械能可能不变

【答案】AC

【解析】

【详解】

A、对于卫星A,根据万有引力提供向心力,可得:偌=m^r,可得地球的质量:M=容,在地球两极,

据万有引力等于重力,可得:m'g=G。,联立解得:g=5?,故A正确;

B、卫星A的运行周期等于地球自转周期T.设卫星B的周期为「.当卫星卫星B比A多转半周时,A、B

第一次相距最远,则有:卷t-?t=n,解得:「=瑞,故B错误;

C、根据开普勒第三定律得:解得:口=寸(悬声故C正确;

D、卫星B通过变轨与A对接,则需要在原轨道上对卫星B加速,使万有引力不足以提供向心力,做离心

运动,最后与A对接,则卫星B的机械能要增大,故D错误。

13.A、B两个半径相同的天体各有一个卫星a、b环绕它们做匀速圆周运动,两个卫星的环绕周期之比为4;

1,A、B各自表面重力加速度之比为4:1(忽略天体的自转),则

A.a、b轨迹半径之比为4:1

B.A、B密度之比为4:1

C.a、b扫过相同面积所需时间之比为1:16

D.a、b所受向心力之比为1:16

【答案】AB

【解析】

【分析】

根据G^=m(?)2r以及G/=mg导出轨道半径与周期和表面重力加速度的关系,然后求解a、b轨迹半径之

比;找到星球密度的表达式,求解密度之比;根据圆周运动的知识求解扫过某一面积所用的时间表达式,

求解a、b扫过相同面积所需时间之比.

【详解】

2

根据*=01(争2r以及啥=mg可得Z=黑=富ocgT;可得a、b轨迹半径之比为葭=百鼾=:

gR2

选项A正确;由=占ocg,则A、B密度之比为4:1,选项B正确;根据t=叱,产0=S,即

广R3"屋4"GRv2

1=名=昌=三,当扫过相同面积S时,则£=.X5=;X(92=;,选项c错误;两卫星ab的质量不确

定,无法比较向心力的大小关系,选项D错误;故选AB.

14.2013年12月10日晚上九点二十分,在太空飞行了九天的“嫦娥三号”飞船再次成功变轨,从

lOOkmX100km的环月圆轨道I降低到椭圆轨道H(近月点15km、远月点100km),两轨道相交于点P,如图

所示.关于“嫦娥三号”飞船,以下说法正确的是()

p

A.飞船在轨道i上运动到p点的速度比在轨道n上运动到p点的速度大

B.飞船在轨道I上运动到p点的向心加速度比在轨道II上运动到P点的向心加速度小

c.飞船在轨道I上的引力势能与动能之和比在轨道n上的引力势能与动能之和大

D.飞船在轨道n上运动的周期大于在轨道I上运动的周期

【答案】AC

【解析】

【详解】

A、沿轨道I运动至P时,制动减速,万有引力大于向心力做向心运动,才能进入轨道n,故在轨道I上运

动到P点的速度比在轨道H上运动到P点的速度大;故A正确.

B、“嫦娥三号”卫星变轨前通过椭圆轨道远地点时只有万有引力来提供加速度,变轨后沿圆轨道运动也是

只有万有引力来提供加速度,同一地点万有引力相同,所以加速度相等;故B错误.

c、变轨的时候点火,发动机做功,从轨道I进入轨道n,发动机要做功使卫星减速,故在轨道I上的势能

与动能之和比在轨道n上的势能与动能之和大;故c正确.

D、根据开普勒第三定律/为常数,可得半长轴a越大,运动周期越大,显然轨道I的半长轴(半径)大于

轨道n的半长轴,故沿轨道n运动的周期小于沿轨道I运动的周期;故D错误.

故选AC.

【点睛】

通过该题要记住:①由高轨道变轨到低轨道需要减速,而由低轨道变轨到高轨道需要加速,这一点在解决

变轨问题时要经常用到,一定要注意掌握.

15.2018年7月25日,科学家们在火星上发现了一个液态水湖,这表明火星上很可能存•在生命。若一质量

为/〃的火星探测器在距火星表面高度为h的轨道上做匀速圆周运动,运行周期为7,已知火星半径为此

引力常量为G,则()

A.探测器的线速度v=2(*)

B.B.火星表面重力加速度g=/)

C.探测器的向心加速度a=------

D.火星的密度=焉

【答案】AB

【解析】

【详解】

探测器的线速度v=3「=丝华西,选项A正确;对探测器:G赢=m?(R+h),解得火星的质量:

卜1=空空;由G^=mg可得火星表面的重力加速度:g=叱物,选项B正确;根据6号=!^可知,

测器的向心加速度:a=-^,选项C错误;火星的密度P=二=]鬻,选项D错误;故选A.B.

j-jtKv1K

16.质量为小的人造地球卫星在地球表面上时重力为G(下列选项中的G均指重力),它在离地面的距离

于地球半径R的圆形轨道上运行时的

A.周期为T=4n手二B.速度为y=J宜C.加速度为a丁

D.动能为Ek-

【答案】ACD

【解析】

【详解】

卫星绕地球做匀速圆周运动,根据万有引力提供向心力:Go*m/m誓r=ma,解得v=押%=2”后,

a=耳,在地球表面的卫星受到的重力等于万有引力,可得G=GOT由题,卫星的轨道半径r=2R,代入解

MU*

答:

A、卫星运动的周期为:故A正确.

B、卫星运动的速率为:

C、卫星的加速度2=黑潟=总故C正确.

D、动能为Ek=Jmv?=9;故D正确.

故选ACD.

【点睛】

本题关键根据人造卫星的万有引力等于向心力,以及地球表面重力等于万有引力列两个方程,通过数学变

形研究.

17.(多选)地球赤道表面上的一物体质量为〃它相对地心的速度为/,地球同步卫星离地面的高度为

h,它相对地心的速度为2,其质量为2。已知地球的质量为M,半径为R,自转角速度为3,表面的重

力加速度为g,地球的第一宇宙速度为v,万有引力常量为G。下列各式成立的是()

A./小于vB.C.!D.—=

【答案】ABD

【解析】

【详解】

第一宇宙速度V是近地卫星的环绕速度,大于同步卫星的速度V2,而根据v=3r可知,因同步卫星与赤道

上的物体具有相同的角速度,可知v2>vl,则v>vl,3==白,即?=去,选项AB正确;考虑地球

V23(R+h)R+hRR+h

自转,则对地球赤道表面上的一物体:6号-叫名=萼,则叫gK邛,选项C错误;对卫星,万有引力提

供向心力,故绊=贮,解得v=户,则二=俘,故D正确;故选ABD。

【点睛】

本题关键是明确卫星与地面物体的区别,对卫星是万有引力提供向心力,而地面物体是万有引力和支持力

的合力提供向心力,考虑地球自传,重力是万有引力的一个分力.

18.2018年7月27日出现了“火星冲日”的天文奇观,火星离地球最近最亮。当地球位于太阳和火星之间

且三者几乎排成一条直线时,天文学称之为“火星冲日”。火星与地球几乎在同一平面内沿同一方向绕太

阳近似做匀速圆周运动。不考虑火星与地球的自转,且假设火星和地球的轨道平面在同一个平面上,相关

数据见下表。则根据提供的数据可知

质量半径与太阳间距离

地球mRr

火星约0.1/77约0.5R约1.5r

A.在火星表面附近发射飞行器的速度至少为7.9km/s

B.理论上计算可知下一次“火星冲日”的时间大约在2020年9月份

C.火星表面的重力加速度与地球表面的重力加速度之比约为2:5

D.火星运行的加速度比地球运行的加速度大

【答案】BC

【解析】

【详解】

根据学==,解得丫=但则出=tx^-V0.1x0.5=A则v火<v地=7.9km/s,则在火星表面附近

发射飞行器的速度小于为7.9km/s,选项A错误;据开普勒第三定律,陪=导,则T火七1.84T地=1.84

【火[地

年;设从火星冲日到下次火星冲日的时间间隔为t,则;一;=1,解得:t^2.2年,所以下一次“火星冲

1地I火

日”的时间大约在2020年9月份,故B正确。行星对表面物体的万有引力等于物体在表面时受到的重力,

则誉『健,可得:g=S则1=青*鼻=0.".=|,选项C正确;太阳对行星的引力充当行星做圆周

运动的向心力,则詈=ma解得a=^,可知火星运行的加速度比地球运行的加速度小,选项D错误;故选

BC.

【点睛】

本题主要是考查了万有引力定律及其应用;解答此类题目一般要把握两条线:一是在星球表面,忽略星球

自转的情况下,万有引力近似等于重力:二是根据万有引力提供向心力列方程进行解答。

19.已知引力常量G,利用下列数据不能计算地球半径的是

A.月球绕地球运动的周期、线速度及地球表面的重力加速度

B.人造卫星绕地球运行的周期、及地球的平均密度

C.地球同步卫星离地的高度、周期及地球的平均密度

D.近地卫星绕地球运行的周期和线速度

【答案】ACD

【解析】

【详解】

已知月球绕地球运行的周期和线速度,根据v=*求解月地距离r;根据万有引力等于向心力,有:

6号=01誓1"求解地球的质量距地球表面加速度为g,则GM=gR2,联立可求解地球的半径R,故A正确:人

造卫星绕地球的周期及地球的平均密度P,因为不知道轨道半径,无法求解地球质量,知道密度也无法求

得地球半径,故B错误;知道同步卫星的周期T和高度h,由G,=m:=r,r=R+h和M=P联立解得

R,故C正确;根据近地卫星的周期和线速度丫上手,可求出轨道半径,近地卫星轨道半径近似等于地球半

径,故D正确;此题选择不能求解地球半径的,故选B。

20.关于黑洞和暗物质(暗物质被称为“世纪之谜”.它“霸占”了宇宙95%的地盘,却摸不到看不着)的问

题,以下说法正确的是(黑洞临界半径公式取为c为光速,C为万有引力常量,"为黑洞质量

A.如果地球成为黑洞的话,那么它的临界半径为("为地球的半径,「为第二宇宙速度)

B.如果太阳成为黑洞,那么灿烂的阳光依然存在,只是太阳光到地球的时间变得更长

C.有两颗星球(质量分别为加和物)的距离为乙不考虑周围其他星球的影响,由牛顿运动定律计算所得

的周期为T,由于宇宙充满均匀的暗物质,所以观察测量所得的周期比7大

D.有两颗星球甲和乙(质量分别为仞和胧)的距离为。不考虑周围其他星球的影响,它们运动的周期为T,

如果其中甲的质量减小△应而乙的质量增大△如距离/不变,那么它们的周期依然为T

【答案】AD

【解析】

【详解】

因为c=护,而地球的第二宇宙速度为丫=月,两式相比得r=^R,所以A正确.如果太阳成为黑洞,

光不能跑出,所以我们将看不到阳光,选项B错误.设甲乙质量变化前,甲的运动半径为rl,甲乙质量变

化后运动周期为T2,甲的运动半径为ri',则G崂=Mi(?)2r「G止半比出=(蚓一A01)(各)2门',

L1L»2

又因为rl=±L,rj=——也山——L=所以T=叵正=户已T=叵三=

1z

M|+M2(Mi-AnQ+Qb+Am)M,+M2\GM2-^0(11]+M2)G(M2+Am)

,故T=T2.

选项C错误,D正确;故选AD.

【点睛】

此题关键是理解宇宙速度的含义;对双星问题,知道它们做圆周运动的向心力由两者间的万有引力提供,

且角速度和周期都相等.

三、解答题

21.探索浩瀚宇宙,发展航天事业,建设航天强国,是我国不懈追求的航天梦,我国航天事业向更深更远

的太空迈进。

(1)2018年12月27日中国北斗卫星导航系统开始提供全球服务,标志着北斗系统正式迈入全球时代。覆

盖全球的北斗卫星导航系统由静止轨道卫星(即地球同步卫星)和非静止轨道卫星共35颗组成的。卫星绕

地球近似做匀速圆周运动。已知其中一颗地球同步卫星距离地球表面的高度为小地球质量为地球半径

为R,引力常量为鼠

a.求该同步卫星绕地球运动的速度/的大小;

b.如图所示,。点为地球的球心,尸点处有一颗地球同步卫星,尸点所在的虚线圆轨道为同步卫星绕地球运

动的轨道。已知/F5.6几忽略大气等一切影响因素,请论证说明要使卫星通讯覆盖全球,至少需要几颗地

球同步卫星?(cos81°=0.15,six\81°=0.99)

(2)今年年初上映的中国首部科幻电影《流浪地球》引发全球热议。根据量子理论,每个光子动量大小=-

"为普朗克常数,儿为光子的波长)。当光照射到物体表面时将产生持续的压力。设有一质量为的飞行

器,其帆面始终与太阳光垂直,且光帆能将太阳光全部反射。已知引力常量为G光速为c,太阳质量为",

太阳单位时间辐射的总能量为E,若以太阳光对飞行器光帆的撞击力为动力,使飞行器始终朝着远离太阳的

方向运动,成为“流浪飞行器”。请论证:随着飞行器与太阳的距离越来越远,是否需要改变光帆的最小

面积s。。(忽略其他星体对飞行器的引力)

【答案】(1)a.=J=b.至少需要3颗地球同步卫星才能覆盖全球(2)随着飞行器与太阳的距离

越来越远,不需要改变光帆的最小面积s°

【解析】

【详解】

(Da.设卫星的质量为他

2

由牛顿第二定律——,

得=户

b.如答图所示,设〃点处地球同步卫星可以覆盖地球赤道的范围对应地心的角度为2〃,至少需要1颗地

由直角三角形函数关系cos=—,/F5.6凡得。=81°。

所以1颗地球同步卫星可以覆盖地球赤道的范围对应地心的角度为2d=162°

所以,N=3,即至少需要3颗地球同步卫星才能覆盖全球

(2)若使飞行器始终朝着远离太阳的方向运动,当飞行器与太阳距离为时,光帆受到太阳光的压力与

太阳对飞行器的引力大小关系,有?士

设光帆对太阳光子的力为尸,根据牛顿第三定律尸=

设时间内太阳光照射到光帆的光子数为,根据动量定理:'=2—

设时间内太阳辐射的光子数为M则=——

设光帆面积为s,-=--;

44

当=一时,得最小面积0=己-----

由上式可知,S。和飞行器与太阳距离无关,所以随着飞行器与太阳的距离越来越远,不需要改变光帆的最

小面积So。

22.2019年1月3日,嫦娥四号探测器成功着陆在月球背面,并通过“鹊桥”中继卫星传回了世界上第一

张近距离拍摄月球背面的图片。此次任务实现了人类探测器首次在月球背面软着陆、首次在月球背面通过

中继卫星与地球通讯,因而开启了人类探索月球的新篇章。

(1)为了尽可能减小着陆过程中月球对飞船的冲击力,探测器在距月面非常近的距离h处才关闭发动机,此

时速度相对月球表面竖直向下,大小为V,然后仅在月球重力作用下竖直下落,接触月面时通过其上的“四

条腿”缓冲,平稳地停在月面,缓冲时间为t,如图1所示0已知月球表面附近的重力加速度为g。,探测器

质量为1110求:

①探测器与月面接触前瞬间相对月球表面的速度’的大小.

②月球对探测器的平均冲击力F的大小。

(2)探测器在月球背面着陆的难度要比在月球正面着陆大很多,其主要的原因在于:由于月球的遮挡,着陆

前探测器将无法和地球之间实现通讯。2018年5月,我国发射了一颗名为“鹊桥”的中继卫星,在地球和

月球背面的探测器之间搭了一个“桥”,从而有效地解决了通讯的问题。为了实现通讯和节约能量,”鹊

桥”的理想位置就是围绕“地一月”系统的一个拉格朗日点运动,如图2所示。所谓“地一月”系统的拉

格朗日点是指空间中的某个点,在该点放置一个质量很小的天体,该天体仅在地球和月球的万有引力作用

下保持与地球和月球的相对位置不变。

鹄桥

探测耦/

'V7...................乎……卡,

月找拉格明日点

图2

①设地球质量为M,月球质量为m,地球中心和月球中心间的距离为L,月球绕地心运动,图2中所示的拉

格朗日点到月球球心的距离为r。推导并写出r与M、m和L之间的关系式。

②地球和太阳组成的“日一地”系统同样存在拉格朗日点,图3为“日-地”系统示意图,请在图中太阳和

地球所在直线上用符号“*”标记出几个可能拉格朗日点的大概位置。

②见解析

【解析】

【详解】

(1)①由运动学公式一2=20

可得探测器着陆前瞬间相对月球表面的速度大小'2+20

②设月球对嫦娥四号探测器的平均冲击大小为F,以竖直向上为正,

根据动量定理得(一0o)=0-(-0')。

解得:=一-y/'+2~"o-+00

(2)①设在图中的拉格朗臼点有一质量为’的物体(«)

则月球对其的万有引力/=—

地球对其的万有引力2为2=FT

质量为’的物体以地球为中心做圆周运动,向心力由/和2的合力提供,设圆周运动的角速度为,则

1+2='飞+)

根据以上三式可得「+-―-,=々+)

/(+y、/

月球绕地球做匀速圆周运动,它们之间的万有引力提供向心力有:—=2

联立以上两式得:-+^r7,=-(+)

②对于“日-地”系统,在太阳和地球连线上共有3个可能的拉格朗日点,其大概位置如图所示:

第1拉格朗日点第2拉格朗口点第3拉格朗日点

----———————卜——————————————*————

太汨地球

23.为了检验使苹果落地的力与维持月球绕地球运动的力是同一种性质的力,牛顿做了著名的月一地检

验.已知地球半径R=6.40X10,m,月球绕地球运行的轨道半径r=3.84X1(/km月球绕地球运行的周期T

=27.3天,地球附近的重力加速度g取9.80m/s?.请你根据以上数据,通过计算推理说明使苹果落地的

力和维持月球绕地球运动的力是同一种性质的力.

【答案】理论分析得出的]=0.0027222/2与天文观测得出的2=00027221/近似相等,可见,

使苹果落地的力和维持月球绕地球运动的力是同一种性质的力

【解析】

【详解】

(1)理论分析:若使苹果落地的力和维持月球绕地球运动的力是同一种性质的力,则同样遵从平方反比律,

即吐4

已知地球半径R=6.40X106m,月球绕地球运行的轨道半径r=3.84X10$km=3.84X10*m,所以r=60R;

月球在其轨道上所受的力将只有它在地球表面所受重力的£=高,则月球在绕地球轨道运行时因地球吸引

6(/

而具有的加速度a=—^0.002722m/s\

l3600

(2)天文观测:T=27.3天=27.3X24X3600s

j2

月球绕地球运行的向心加速度为:a产Jr

解得:鱼=0.002721(11/$'

(3)理论分析中的国与天文观测中2的符合得很好,可见,使苹果落地的力和维持月球绕地球运动的力是

同一种性质的力。

如图,质量分别为m和M的两个星球A和B在引力作用下都绕0点做匀速周运动,星球A和B两者中心之

间距离为L。已知A、B的中心和0三点始终共线,A和B分别在0的两侧。引力常数为G。

24.求两星球做圆周运动的周期。

25.在地月系统中,若忽略其它星球的影响,可以将月球和地球看成上述星球A和B,月球绕其轨道中心运

行为的周期记为但在近似处理问题时,常常认为月球是绕地心做圆周运动的,这样算得的运行周期4。

已知地球和月球的质量分别为5.98X10"g和7.35X1022kg。求0与/两者平方之比。(结果保留3位

小数)

【答案】

24.7=2”

25.1.01

【解析】

试题分析:(1)A和B绕。做匀速圆周运动,它们之间的万有引力提供向心力,则A和B的向心力大小相等,

且A和B和。始终共线,说明A和B有相同的角速度和周期,因此有:2=2,+=

联立解得:=---,=---

对A根据牛顿第二定律和万有引力定律得:—=^-7.-

化简得:=21-^-

(2)将地月看成双星,由(1)得产2I「、

7(+)

42

将月球看作绕地心做圆周运动,根据牛顿第二定律和万有引力定律得:—=J

化简得:2=2F

所以两种周期的平方比值为:(一)2=='9双1:7普产=1012

考点:考查了万有引力定律的应用

【名师点睛】这是一个双星的问题,A和B绕0做匀速圆周运动,它们之间的万有引力提供各自的向心力,

A和IB有相同的角速度和周期,结合牛顿第二定律和万有引力定律解决问题.

26.万有引力定律揭示了天体运动规律与地上物体运动规律具有内在的一致性。

(1)用弹簧测力计称量一个相对于地球静止的物体的重力,随称量位置的变化可能会有不同结果。已知地

球质量为M,自转周期为T,引力常量为G。将地球视为半径为R、质量分布均匀的球体,不考虑空气的影

响。设在地球北极地面称量时,弹簧测力计的读数是F。。

①若在北极上空高出地面h处称量,弹簧测力计读数为F”求比值黑的表达式,并就h=l.0%R的情形算

出具体数值(计算结果保留两位有效数字);

②若在赤道表面称量,弹簧测力计读数为H,求比值冬的表达式。

(2)设想地球绕太阳公转的圆周轨道半径为r、太阳半径为R和地球的半径R三者均减小为现在的1.0%,

而太阳和地球的密度均匀且不变。仅考虑太阳与地球之间的相互作用,以现实地球的1年为标准,计算“设

想地球”的1年将变为多长?

【答案L(1)①0.98,②—=7--^—

o/

(2)“设想地球”的1年与现实地球的1年时间相同

【解析】

F.

试题分析:(1)根据万有引力等于重力得出比值?的表达式,并求出具体的数值.

在赤道,由于万有引力的一

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论