版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海市长宁区名校2024届中考数学押题卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.二次函数y=ax2+bx+c(a≠0)的图象如图,则反比例函数y=与一次函数y=bx﹣c在同一坐标系内的图象大致是()A. B. C. D.2.为丰富学生课外活动,某校积极开展社团活动,开设的体育社团有:A:篮球,B:排球,C:足球,D:羽毛球,E:乒乓球.学生可根据自己的爱好选择一项,李老师对八年级同学选择体育社团情况进行调查统计,制成了两幅不完整的统计图(如图),则以下结论不正确的是()A.选科目E的有5人B.选科目A的扇形圆心角是120°C.选科目D的人数占体育社团人数的D.据此估计全校1000名八年级同学,选择科目B的有140人3.﹣2的绝对值是()A.2 B. C. D.4.关于x的一元二次方程x2-2x-(m-1)=0有两个不相等的实数根,则实数m的取值范围是()A.且 B. C.且 D.5.如图,AB∥CD,FE⊥DB,垂足为E,∠1=50°,则∠2的度数是()A.60° B.50° C.40° D.30°6.如果实数a=,且a在数轴上对应点的位置如图所示,其中正确的是()A.B.C.D.7.不等式组的整数解有()A.0个 B.5个 C.6个 D.无数个8.某自行车厂准备生产共享单车4000辆,在生产完1600辆后,采用了新技术,使得工作效率比原来提高了20%,结果共用了18天完成任务,若设原来每天生产自行车x辆,则根据题意可列方程为()A.+=18 B.=18C.+=18 D.=189.如图是由5个大小相同的正方体组成的几何体,则该几何体的左视图是()A. B.C. D.10.如图是小强用八块相同的小正方体搭建的一个积木,它的左视图是()A. B. C. D.二、填空题(共7小题,每小题3分,满分21分)11.若关于的一元二次方程无实数根,则一次函数的图象不经过第_________象限.12.若分式的值为正,则实数的取值范围是__________________.13.一个圆的半径为2,弦长是2,求这条弦所对的圆周角是_____.14.甲乙两种水稻试验品中连续5年的平均单位面积产量如下(单位:吨/公顷)品种
第1年
第2年
第3年
第4年
第5年
品种
甲
9.8
9.9
10.1
10
10.2
甲
乙
9.4
10.3
10.8
9.7
9.8
乙
经计算,,试根据这组数据估计_____中水稻品种的产量比较稳定.15.如果小球在如图所示的地面上自由滚动,并随机停留在某块方砖上,每块方砖大小、质地完全一致,那么它最终停留在黑色区域的概率是__________.16.如图,小红作出了边长为1的第1个正△A1B1C1,算出了正△A1B1C1的面积,然后分别取△A1B1C1三边的中点A2,B2,C2,作出了第2个正△A2B2C2,算出了正△A2B2C2的面积,用同样的方法,作出了第3个正△A3B3C3,算出了正△A3B3C3的面积…,由此可得,第8个正△A8B8C8的面积是_____.17.如图,在梯形ABCD中,AD∥BC,∠A=90°,点E在边AB上,AD=BE,AE=BC,由此可以知道△ADE旋转后能与△BEC重合,那么旋转中心是_____.三、解答题(共7小题,满分69分)18.(10分)如图,在一个平台远处有一座古塔,小明在平台底部的点C处测得古塔顶部B的仰角为60°,在平台上的点E处测得古塔顶部的仰角为30°.已知平台的纵截面为矩形DCFE,DE=2米,DC=20米,求古塔AB的高(结果保留根号)19.(5分)某商场计划购进A,B两种新型节能台灯共100盏,这两种台灯的进价、售价如下表:类型价格进价(元/盏)售价(元/盏)A型3045B型5070(1)若商场预计进货款为3500元,则这两种台灯各进多少盏.(2)若设商场购进A型台灯m盏,销售完这批台灯所获利润为P,写出P与m之间的函数关系式.(3)若商场规定B型灯的进货数量不超过A型灯数量的4倍,那么A型和B型台灯各进多少盏售完之后获得利润最多?此时利润是多少元.20.(8分)解不等式组:,并把解集在数轴上表示出来.21.(10分)如图,一次函数y=kx+b(k、b为常数,k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=nx(1)求一次函数与反比例函数的解析式;(2)记两函数图象的另一个交点为E,求△CDE的面积;(3)直接写出不等式kx+b≤nx22.(10分)抛物线与x轴交于A,B两点(点A在点B的左边),与y轴正半轴交于点C.(1)如图1,若A(-1,0),B(3,0),①求抛物线的解析式;②P为抛物线上一点,连接AC,PC,若∠PCO=3∠ACO,求点P的横坐标;(2)如图2,D为x轴下方抛物线上一点,连DA,DB,若∠BDA+2∠BAD=90°,求点D的纵坐标.23.(12分)某制衣厂某车间计划用10天加工一批出口童装和成人装共360件,该车间的加工能力是:每天能单独加工童装45件或成人装30件.(1)该车间应安排几天加工童装,几天加工成人装,才能如期完成任务;(2)若加工童装一件可获利80元,加工成人装一件可获利120元,那么该车间加工完这批服装后,共可获利多少元.24.(14分)如图,在平面直角坐标系中,直线经过点和,双曲线经过点B.(1)求直线和双曲线的函数表达式;(2)点C从点A出发,沿过点A与y轴平行的直线向下运动,速度为每秒1个单位长度,点C的运动时间为t(0<t<12),连接BC,作BD⊥BC交x轴于点D,连接CD,①当点C在双曲线上时,求t的值;②在0<t<6范围内,∠BCD的大小如果发生变化,求tan∠BCD的变化范围;如果不发生变化,求tan∠BCD的值;③当时,请直接写出t的值.
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解题分析】
根据二次函数的图象找出a、b、c的正负,再结合反比例函数、一次函数系数与图象的关系即可得出结论.【题目详解】解:观察二次函数图象可知:开口向上,a>1;对称轴大于1,>1,b<1;二次函数图象与y轴交点在y轴的正半轴,c>1.∵反比例函数中k=﹣a<1,∴反比例函数图象在第二、四象限内;∵一次函数y=bx﹣c中,b<1,﹣c<1,∴一次函数图象经过第二、三、四象限.故选C.【题目点拨】本题考查了二次函数的图象、反比例函数的图象以及一次函数的图象,解题的关键是根据二次函数的图象找出a、b、c的正负.本题属于基础题,难度不大,解决该题型题目时,根据二次函数图象找出a、b、c的正负,再结合反比例函数、一次函数系数与图象的关系即可得出结论.2、B【解题分析】
A选项先求出调查的学生人数,再求选科目E的人数来判定,B选项先求出A科目人数,再利用×360°判定即可,C选项中由D的人数及总人数即可判定,D选项利用总人数乘以样本中B人数所占比例即可判定.【题目详解】解:调查的学生人数为:12÷24%=50(人),选科目E的人数为:50×10%=5(人),故A选项正确,选科目A的人数为50﹣(7+12+10+5)=16人,选科目A的扇形圆心角是×360°=115.2°,故B选项错误,选科目D的人数为10,总人数为50人,所以选科目D的人数占体育社团人数的,故C选项正确,估计全校1000名八年级同学,选择科目B的有1000×=140人,故D选项正确;故选B.【题目点拨】本题主要考查了条形统计图及扇形统计图,解题的关键是读懂统计图,从统计图中找到准确信息.3、A【解题分析】分析:根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点﹣2到原点的距离是2,所以﹣2的绝对值是2,故选A.4、A【解题分析】
根据一元二次方程的系数结合根的判别式△>1,即可得出关于m的一元一次不等式,解之即可得出实数m的取值范围.【题目详解】∵关于x的一元二次方程x2﹣2x﹣(m﹣1)=1有两个不相等的实数根,∴△=(﹣2)2﹣4×1×[﹣(m﹣1)]=4m>1,∴m>1.故选B.【题目点拨】本题考查了根的判别式,牢记“当△>1时,方程有两个不相等的实数根”是解题的关键.5、C【解题分析】试题分析:∵FE⊥DB,∵∠DEF=90°,∵∠1=50°,∴∠D=90°﹣50°=40°,∵AB∥CD,∴∠2=∠D=40°.故选C.考点:平行线的性质.6、C【解题分析】分析:估计的大小,进而在数轴上找到相应的位置,即可得到答案.详解:由被开方数越大算术平方根越大,即故选C.点睛:考查了实数与数轴的的对应关系,以及估算无理数的大小,解决本题的关键是估计的大小.7、B【解题分析】
先解每一个不等式,求出不等式组的解集,再求整数解即可.【题目详解】解不等式x+3>0,得x>﹣3,解不等式﹣x≥﹣2,得x≤2,∴不等式组的解集为﹣3<x≤2,∴整数解有:﹣2,﹣1,0,1,2共5个,故选B.【题目点拨】本题主要考查了不等式组的解法,并会根据未知数的范围确定它所满足的特殊条件的值.一般方法是先解不等式组,再根据解集求出特殊值.8、B【解题分析】
根据前后的时间和是18天,可以列出方程.【题目详解】若设原来每天生产自行车x辆,根据前后的时间和是18天,可以列出方程.故选B【题目点拨】本题考核知识点:分式方程的应用.解题关键点:根据时间关系,列出分式方程.9、B【解题分析】
找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【题目详解】解:从左面看易得下面一层有2个正方形,上面一层左边有1个正方形.故选:B.【题目点拨】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.10、D【解题分析】
左视图从左往右,2列正方形的个数依次为2,1,依此得出图形D正确.故选D.【题目详解】请在此输入详解!二、填空题(共7小题,每小题3分,满分21分)11、一【解题分析】
根据一元二次方程的定义和判别式的意义得到m≠0且△=(-2)2-4m×(-1)<0,所以m<-1,然后根据一次函数的性质判断一次函数y=mx+m的图象所在的象限即可.【题目详解】∵关于x的一元二次方程mx2-2x-1=0无实数根,∴m≠0且△=(-2)2-4m×(-1)<0,∴m<-1,∴一次函数y=mx+m的图象经过第二、三、四象限,不经过第一象限.故答案为一.【题目点拨】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.也考查了一次函数的性质.12、x>0【解题分析】【分析】分式值为正,则分子与分母同号,据此进行讨论即可得.【题目详解】∵分式的值为正,∴x与x2+2的符号同号,∵x2+2>0,∴x>0,故答案为x>0.【题目点拨】本题考查了分式值为正的情况,熟知分式值为正时,分子分母同号是解题的关键.13、60°或120°【解题分析】
首先根据题意画出图形,过点O作OD⊥AB于点D,通过垂径定理,即可推出∠AOD的度数,求得∠AOB的度数,然后根据圆周角定理,即可推出∠AMB和∠ANB的度数.【题目详解】解:如图:连接OA,过点O作OD⊥AB于点D,OA=2,AB=,AD=BD=,AD:OA=:2,∠AOD=,∠AOB=,∠AMB=,∠ANB=.故答案为:或.【题目点拨】本题主要考查垂径定理与圆周角定理,注意弦所对的圆周角有两个,他们互为补角.14、甲【解题分析】
根据方差公式分别求出两种水稻的产量的方差,再进行比较即可.【题目详解】甲种水稻产量的方差是:,乙种水稻产量的方差是:,∴0.02<0.124.∴产量比较稳定的小麦品种是甲.15、.【解题分析】
先求出黑色方砖在整个地面中所占的比值,再根据其比值即可得出结论.【题目详解】解:∵由图可知,黑色方砖4块,共有16块方砖,∴黑色方砖在整个区域中所占的比值∴它停在黑色区域的概率是;故答案为.【题目点拨】本题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.16、【解题分析】
根据相似三角形的性质,先求出正△A2B2C2,正△A3B3C3的面积,依此类推△AnBnCn的面积是,从而求出第8个正△A8B8C8的面积.【题目详解】正△A1B1C1的面积是,而△A2B2C2与△A1B1C1相似,并且相似比是1:2,则面积的比是,则正△A2B2C2的面积是×;因而正△A3B3C3与正△A2B2C2的面积的比也是,面积是×()2;依此类推△AnBnCn与△An-1Bn-1Cn-1的面积的比是,第n个三角形的面积是()n-1.所以第8个正△A8B8C8的面积是×()7=.故答案为.【题目点拨】本题考查了相似三角形的性质及应用,相似三角形面积的比等于相似比的平方,找出规律是关键.17、CD的中点【解题分析】
根据旋转的性质,其中对应点到旋转中心的距离相等,于是得到结论.【题目详解】∵△ADE旋转后能与△BEC重合,∴△ADE≌△BEC,∴∠AED=∠BCE,∠B=∠A=90°,∠ADE=∠BEC,DE=EC,∴∠AED+∠BEC=90°,∴∠DEC=90°,∴△DEC是等腰直角三角形,∴D与E,E与C是对应顶点,∵CD的中点到D,E,C三点的距离相等,∴旋转中心是CD的中点,故答案为:CD的中点.【题目点拨】本题考查了旋转的性质,等腰直角三角形的性质,关键是明确旋转中心的概念.三、解答题(共7小题,满分69分)18、古塔AB的高为(10+2)米.【解题分析】试题分析:延长EF交AB于点G.利用AB表示出EG,AC.让EG-AC=1即可求得AB长.试题解析:如图,延长EF交AB于点G.设AB=x米,则BG=AB﹣2=(x﹣2)米.则EG=(AB﹣2)÷tan∠BEG=(x﹣2),CA=AB÷tan∠ACB=x.则CD=EG﹣AC=(x﹣2)﹣x=1.解可得:x=10+2.答:古塔AB的高为(10+2)米.19、(1)应购进A型台灯75盏,B型台灯25盏;(2)P=﹣5m+2000;(3)商场购进A型台灯20盏,B型台灯80盏,销售完这批台灯时获利最多,此时利润为1900元.【解题分析】
(1)设商场应购进A型台灯x盏,表示出B型台灯为(100-x)盏,然后根据进货款=A型台灯的进货款+B型台灯的进货款列出方程求解即可;(2)根据题意列出方程即可;
(3)设商场销售完这批台灯可获利y元,根据获利等于两种台灯的获利总和列式整理,再求出x的取值范围,然后根据一次函数的增减性求出获利的最大值.【题目详解】解:(1)设商场应购进A型台灯x盏,则B型台灯为(100﹣x)盏,根据题意得,30x+50(100﹣x)=3500,解得x=75,所以,100﹣75=25,答:应购进A型台灯75盏,B型台灯25盏;(2)设商场销售完这批台灯可获利P元,则P=(45﹣30)m+(70﹣50)(100﹣m),=15m+2000﹣20m,=﹣5m+2000,即P=﹣5m+2000,(3)∵B型台灯的进货数量不超过A型台灯数量的4倍,∴100﹣m≤4m,∴m≥20,∵k=﹣5<0,P随m的增大而减小,∴m=20时,P取得最大值,为﹣5×20+2000=1900(元)答:商场购进A型台灯20盏,B型台灯80盏,销售完这批台灯时获利最多,此时利润为1900元.【题目点拨】本题考查了一次函数与一元一次方程的应用,解题的关键是熟练的掌握一次函数与一元一次方程的应用.20、x≥【解题分析】分析:分别求解两个不等式,然后按照不等式的确定方法求解出不等式组的解集,然后表示在数轴上即可.详解:,由①得,x>﹣2;由②得,x≥,故此不等式组的解集为:x≥.在数轴上表示为:.点睛:本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21、(1)y=﹣2x+1;y=﹣80x【解题分析】
(1)根据OA、OB的长写出A、B两点的坐标,再用待定系数法求解一次函数的解析式,然后求得点C的坐标,进而求出反比例函数的解析式.(2)联立方程组求解出交点坐标即可.(3)观察函数图象,当函数y=kx+b的图像处于y=nx下方或与其有重合点时,x的取值范围即为【题目详解】(1)由已知,OA=6,OB=1,OD=4,∵CD⊥x轴,∴OB∥CD,∴△ABO∽△ACD,∴,∴,∴CD=20,∴点C坐标为(﹣4,20),∴n=xy=﹣80.∴反比例函数解析式为:y=﹣,把点A(6,0),B(0,1)代入y=kx+b得:,解得:.∴一次函数解析式为:y=﹣2x+1,(2)当﹣=﹣2x+1时,解得,x1=10,x2=﹣4,当x=10时,y=﹣8,∴点E坐标为(10,﹣8),∴S△CDE=S△CDA+S△EDA=.(3)不等式kx+b≤,从函数图象上看,表示一次函数图象不低于反比例函数图象,∴由图象得,x≥10,或﹣4≤x<0.【题目点拨】本题考查了应用待定系数法求一次函数和反比例函数解析式以及用函数的观点通过函数图像解不等式.22、(1)①y=-x2+2x+3②(2)-1【解题分析】分析:(1)①把A、B的坐标代入解析式,解方程组即可得到结论;②延长CP交x轴于点E,在x轴上取点D使CD=CA,作EN⊥CD交CD的延长线于N.由CD=CA,OC⊥AD,得到∠DCO=∠ACO.由∠PCO=3∠ACO,得到∠ACD=∠ECD,从而有tan∠ACD=tan∠ECD,,即可得出AI、CI的长,进而得到.设EN=3x,则CN=4x,由tan∠CDO=tan∠EDN,得到,故设DN=x,则CD=CN-DN=3x=,解方程即可得出E的坐标,进而求出CE的直线解析式,联立解方程组即可得到结论;(2)作DI⊥x轴,垂足为I.可以证明△EBD∽△DBC,由相似三角形对应边成比例得到,即,整理得.令y=0,得:.故,从而得到.由,得到,解方程即可得到结论.详解:(1)①把A(-1,0),B(3,0)代入得:,解得:,∴②延长CP交x轴于点E,在x轴上取点D使CD=CA,作EN⊥CD交CD的延长线于N.∵CD=CA,OC⊥AD,∴∠DCO=∠ACO.∵∠PCO=3∠ACO,∴∠ACD=∠ECD,∴tan∠ACD=tan∠ECD,∴,AI=,∴CI=,∴.设EN=3x,则CN=4x.∵tan∠CDO=tan∠EDN,∴,∴DN=x,∴CD=CN-DN=3x=,∴,∴DE=,E(,0).CE的直线解析式为:,,解得:.点P的横坐标.(2)作DI⊥x轴,垂足为I.∵∠BDA+2∠BAD=90°,∴∠DBI+∠BAD=90°.∵∠BDI+∠DBI=90°,∴∠BAD=∠BDI.∵∠BID=∠DIA,∴△EBD∽△DBC,∴,∴,∴.令y=0,得:.∴,∴.∵,∴,解得:yD=0或-1.∵D为x轴下方一点,∴,∴D的纵坐标-1.点睛:本题是二次函数的综合题.考查了二次函数解析式、性质,相似三角形的判定与性质,根与系数的关系.综合性比较强,难度较大.23、(1)该车间应安排4天加工童装,6天加工成人装;(2)36000元.【解题分析】
(1)利用某车间计划用10天加工一批出口童装和成人装共360件,分别得出方程组成方程组求出即可;(2)利用(1)中所求,分别得出两种服装获利即可得出答案.【题目详解】解:(1)设该车间应安排x天加工童装,y天加工成人装,由题意得:,解得:,答:该车间应安排4天加工童装,6天加工成人装;(2)∵45×4=180,30×6=180,∴180×80+180×120=180×(80+120)=36000(元),答:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 道路安全学习心得体会
- 护理人员职业道德培训
- 油库应急处理流程
- 初中历史教案反思
- 布艺扎染教案反思
- 白露主题班会教案
- 和的认识说课稿
- 文化创意承销协议书范本
- 水利工程机械施工合同
- 土建项目协议书范本
- 2024-2025学年人教版物理九年级上学期期中测试物理模拟试卷
- 某食品有限公司安全生产风险评估分级管控手册
- (工作计划)非物质文化遗产保护方案
- 下肢深静脉血栓的预防和护理新进展
- 大学生国家安全教育学习通超星期末考试答案章节答案2024年
- 学术论文文献阅读与机助汉英翻译智慧树知到答案2024年重庆大学
- 2024分布式光伏并网发电系统设计导则
- 老年心房颤动诊治中国专家共识(2024)解读
- 供货方案及保证措施供货方案六篇
- 2024年七年级历史上册 第12课《汉武帝巩固大一统王朝》教案 新人教版
- 深入学习2024《军队生态环境保护条例》
评论
0/150
提交评论