版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
培优专题09全等三角形的十大模型之角平分线和半角模型◎模型九:角平分线模型【模型1】:如图一,角平分线+对称型CCCOBBAAANM图一利用角平分线图形的对称性,在角的两边构造对称全等三角形,可以得到对应边、对应角相等。利用对称性把一些线段或角进行转移,这是经常使用的一种解题技巧。【理论依据】:三边对应相等的三角戏是全等三角形COB(SSS)、全等三角形对应角相等COB【模型2】:如图二,角平分线+垂直两边型角平分线性质定理:角的平分线上的点作角两边垂直段构成的两个RT三角形全等.如图二【几何语言】:∵OC为∠AOB的角平分线,D为OC上一点DE⊥OA,DF⊥OB∴,∴DE=DF【模型3】如图三,角平分线+垂直角平分线型如图三【说明】:构造此模型可以利用等腰三角形的“三线合一”,也可以得到两个全等的直角三角形,进而得到对应边、对应角相等。这个模型巧妙地把角平分线和三线合一联系了起来。【模型四】角平分线+平行线型如图四【说明】:有角平分线时,常过角平分线上一点作角的一边的平行线,构造等腰三角形,为证明结论提供更多的条件,体现了角平分线与等腰三角形之间的密切关系。1.(2022·全国·八年级)已知:如图,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足,下列结论:①△ABD≌△EBC②∠BCE+∠BCD=180°③AD=AE=EC④BA+BC=2BF其中正确的是(
)A.①②③ B.①③④ C.①②④ D.①②③④2.(2019·浙江杭州·八年级期末)如图,中,,的角平分线、相交于点,过作交的延长线于点,交于点,则下列结论:①;②;③;④四边形,其中正确的个数是(
)A.4 B.3 C.2 D.13.(2022·全国·八年级课时练习)已知,△ABC中,∠BAC=120°,AD平分∠BAC,∠BDC=60°,AB=2,AC=3,则AD的长是________.4.(2022·全国·八年级课时练习)如图,BP平分∠ABC,,E、F分别是角两边上点,现有四个结论知其一定能得其余结论的有①;②;③;④,_____.5.(2022·江苏·八年级课时练习)在△ABC中,AD为△ABC的角平分线,点E是直线BC上的动点.(1)如图1,当点E在CB的延长线上时,连接AE,若∠E=48°,AE=AD=DC,则∠ABC的度数为.(2)如图2,AC>AB,点P在线段AD延长线上,比较AC+BP与AB+CP之间的大小关系,并证明.(3)连接AE,若∠DAE=90°,∠BAC=24°,且满足AB+AC=EC,请求出∠ACB的度数(要求:画图,写思路,求出度数).6.(2022·全国·八年级课时练习)如图,已知在四边形ABCD中,BD是的平分线,.2求证:.◎模型十:半角全等模型【模型分析】过等腰三角形顶点两条射线,使两条射线的夹角为等腰三角形顶角的一半这样的模型称为半角模型。【常见模型】常见的图形为正方形,正三角形,等腰直角三角形等,解题思路一般是将半角两边的三角形通过旋转到一边合并成新的三角形,从而进行等量代换,然后证明与半角形成的三角形全等,再通过全等的性质得到线段之间的数量关系。半角模型(题中出现角度之间的半角关系)利用旋转——证全等——得到相关结论.7.(2022·江苏·八年级专题练习)如图,在中,,,D、E是斜边上两点,且,若,,,则与的面积之和为(
)A.36 B.21 C.30 D.228.(2022·江苏·八年级专题练习)如图所示,在Rt△ABC中,AB=AC,D、E是斜边BC上的两点,且∠DAE=45°,将△ADC绕点A按顺时针方向旋转90°后得到△AFB,连接EF,有下列结论:①BE=DC;②∠BAF=∠DAC;③∠FAE=∠DAE;④BF=DC.其中正确的有()A.①②③④ B.②③ C.②③④ D.③④9.(2022·江苏·八年级专题练习)如图,在Rt△ABC和Rt△BCD中,∠BAC=∠BDC=90°,BC=4,AB=AC,∠CBD=30°,M,N分别在BD,CD上,∠MAN=45°,则△DMN的周长为_____.10.(2022·江苏·八年级专题练习)如图,在Rt△ABC和Rt△BCD中,∠BAC=∠BDC=90°,BC=8,AB=AC,∠CBD=30°,BD=4,M,N分别在BD,CD上,∠MAN=45°,则△DMN的周长为_____.11.(2022·陕西西安·七年级期末)问题背景:如图1,在四边形ABCD中,,,E、F分别是BC,CD上的点,且∠EAF=60°,探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G,使DG=BE,连接AG,先证明,再证明,可得出结论,他的结论应是______.实际应用:如图2,在新修的小区中,有块四边形绿化ABCD,四周修有步行小径,且AB=AD,∠B+∠D=180°,在小径BC,CD上各修一凉亭E,F,在凉亭E与F之间有一池塘,不能直接到达,经测量得,BE=10米,DF=15米,试求两凉亭之间的距离EF.12.(2022·全国·八年级课时练习)综合与实践(1)如图1,在正方形ABCD中,点M、N分别在AD、CD上,若∠MBN=45°,则MN,AM,CN的数量关系为.(2)如图2,在四边形ABCD中,BC∥AD,AB=BC,∠A+∠C=180°,点M、N分别在AD、CD上,若∠MBN=∠ABC,试探索线段MN
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 石油天然气工程内部承包协议示范文本
- 商业合作合同样本
- 厂房租赁合同的样式参考
- 汽车质押担保借款合同书
- 旅游产品销售代理协议
- 香港与境外股市投资服务协议书
- 共同研发软件合同书样本
- 2024年设备借条范本正规
- 2022年学校意识形态自查报告6篇
- 2024年媒体传媒项目资金引进居间合同
- CATTI汉英词汇手册
- 英语漫话天府新村智慧树知到答案2024年四川工商职业技术学院
- 《无人机法律法规知识》课件-第1章 民用航空法概述
- GB/Z 44306-2024颗粒质量一致性评价指南
- 大健康产业互联网医疗服务创新方案设计
- 2024年新北师大版一年级上册数学课件 综合实践1 第2课时 观察教室
- 幼儿家庭教育(山东联盟)智慧树知到答案2024年青岛滨海学院
- 三年级上册多位数乘一位数竖式计算练习200道及答案
- 三个和尚幼儿故事课件
- 国家基本公共卫生服务项目规范(第三版)培训课件
- 课外古诗词诵读-七年级上册语文教案
评论
0/150
提交评论