![山东省示范初中2023年高二上数学期末教学质量检测模拟试题含解析_第1页](http://file4.renrendoc.com/view/d7136f443c34d55b71c7636f02211378/d7136f443c34d55b71c7636f022113781.gif)
![山东省示范初中2023年高二上数学期末教学质量检测模拟试题含解析_第2页](http://file4.renrendoc.com/view/d7136f443c34d55b71c7636f02211378/d7136f443c34d55b71c7636f022113782.gif)
![山东省示范初中2023年高二上数学期末教学质量检测模拟试题含解析_第3页](http://file4.renrendoc.com/view/d7136f443c34d55b71c7636f02211378/d7136f443c34d55b71c7636f022113783.gif)
![山东省示范初中2023年高二上数学期末教学质量检测模拟试题含解析_第4页](http://file4.renrendoc.com/view/d7136f443c34d55b71c7636f02211378/d7136f443c34d55b71c7636f022113784.gif)
![山东省示范初中2023年高二上数学期末教学质量检测模拟试题含解析_第5页](http://file4.renrendoc.com/view/d7136f443c34d55b71c7636f02211378/d7136f443c34d55b71c7636f022113785.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省示范初中2023年高二上数学期末教学质量检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知点B是A(3,4,5)在坐标平面xOy内的射影,则||=()A. B.C.5 D.52.命题“,”的否定为()A., B.,C., D.,3.抛物线的准线方程为()A. B.C. D.4.已知数列通项公式,则()A.6 B.13C.21 D.315.已知函数,,若对于任意的,存在唯一的,使得,则实数a的取值范围是()A(e,4) B.(e,4]C.(e,4) D.(,4]6.圆上到直线的距离为的点共有A.个 B.个C.个 D.个7.设,,则“”是“”的A.充要条件 B.充分而不必要条件C.必要而不充分条件 D.既不充分也不必要条件8.抛掷两枚质地均匀的硬币,设事件“第一枚硬币正面朝上”,事件“第二枚硬币反面朝上”,则下列结论中正确的为()A.与互为对立事件 B.与互斥C与相等 D.9.已知{}为等比数列.,则=()A.—4 B.4C.—4或4 D.1610.关于实数a,b,c,下列说法正确的是()A.如果,则,,成等差数列B.如果,则,,成等比数列C.如果,则,,成等差数列D.如果,则,,成等差数列11.下列命题中的假命题是()A.,B.存在四边相等的四边形不是正方形C.“存在实数,使”的否定是“不存在实数,使”D.若且,则,至少有一个大于12.已知椭圆的长轴长为10,焦距为8,则该椭圆的短轴长等于()A.3 B.6C.8 D.12二、填空题:本题共4小题,每小题5分,共20分。13.命题“若,则”的否命题为______14.已知是双曲线的左、右焦点,若为双曲线上一点,且,则__________.15.已知数列满足,若对任意恒成立,则实数的取值范围为________16.已知过椭圆上的动点作圆(为圆心):的两条切线,切点分别为,若的最小值为,则椭圆的离心率为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,曲线在点处的切线与直线垂直(其中为自然对数的底数)(1)求的值;(2)是否存在常数,使得对于定义域内的任意,恒成立?若存在,求出的值;若不存在,请说明理由18.(12分)大学生王蕾利用暑假参加社会实践,对机械销售公司月份至月份销售某种机械配件的销售量及销售单价进行了调查,销售单价和销售量之间的一组数据如表所示:月份销售单价(元)销售量(件)(1)根据至月份数据,求出关于的回归直线方程;(2)若剩下的月份的数据为检验数据,并规定由回归直线方程得到的估计数据与检验数据的误差不超过元,则认为所得到的回归直线方程是理想的,试问(1)中所得到的回归直线方程是否理想?(注:,,参考数据:,)19.(12分)已知函数(1)讨论的单调性:(2)若对恒成立,求的取值范围20.(12分)在中,内角A、B、C的对边分别为a、b、c,满足(1)求A的大小;(2)若,的面积为,求的周长21.(12分)已知椭圆的离心率,过椭圆C的焦点且垂直于x轴的直线截椭圆所得到的线段的长度为1(1)求椭圆C的方程;(2)直线交椭圆C于A、B两点,若y轴上存在点P,使得是以AB为斜边的等腰直角三角形,求的面积的取值范围22.(10分)等差数列中,首项,且成等比数列(1)求数列的通项公式;(2)求数列的前项和
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】先求出B(3,4,0),由此能求出||【详解】解:∵点B是点A(3,4,5)在坐标平面Oxy内的射影,∴B(3,4,0),则||==5故选:C2、A【解析】利用含有一个量词的命题的否定的定义求解.【详解】因为命题“,”是全称量词命题,所以其否定是存在量词命题,即为,,故选:A3、A【解析】将抛物线的方程化成标准形式,即可得到答案;【详解】抛物线的方程化成标准形式,准线方程为,故选:A.4、C【解析】令即得解.【详解】解:令得.故选:C5、B【解析】结合导数和二次函数的性质可求出和的值域,结合已知条件可得,,从而可求出实数a的取值范围.【详解】解:g(x)=x2ex的导函数为g′(x)=2xex+x2ex=x(x+2)ex,当时,,由时,,时,,可得g(x)在[–1,0]上单调递减,在(0,1]上单调递增,故g(x)在[–1,1]上的最小值为g(0)=0,最大值为g(1)=e,所以对于任意的,.因为开口向下,对称轴为轴,又,所以当时,,当时,,则函数在[,2]上的值域为[a–4,a],且函数f(x)在,图象关于轴对称,在(,2]上,函数单调递减.由题意,得,,可得a–4≤0<e<,解得ea≤4故选:B【点睛】本题考查了利用导数求函数的最值,考查了二次函数的性质,属于中档题.本题的难点是这一条件的转化.6、C【解析】求出圆的圆心和半径,比较圆心到直线的距离和圆的半径的关系即可得解.【详解】圆可变为,圆心为,半径为,圆心到直线的距离,圆上到直线的距离为的点共有个.故选:C.【点睛】本题考查了圆与直线的位置关系,考查了学生合理转化的能力,属于基础题.7、C【解析】不能推出,反过来,若则成立,故为必要不充分条件.8、D【解析】利用互斥事件和对立事件的定义分析判断即可【详解】因为抛掷两枚质地均匀的硬币包含第一枚硬币正面朝上第二枚硬币正面朝上,第一枚硬币正面朝上第二枚硬币反面朝上,第一枚硬币反面朝上第二枚硬币正面朝上,第一枚硬币反面朝上第二枚硬币反面朝上,4种情况,其中事件包含第一枚硬币正面朝上第二枚硬币正面朝上,第一枚硬币正面朝上第二枚硬币反面朝上2种情况,事件包含第一枚硬币正面朝上第二枚硬币反面朝上,第一枚硬币反面朝上第二枚硬币反面朝上2种情况,所以与不互斥,也不对立,也不相等,,所以ABC错误,D正确,故选:D9、B【解析】根据题意先求出公比,进而用等比数列通项公式求得答案.【详解】由题意,设公比为q,则,则.故选:B.10、B【解析】根据给定条件结合取特值、推理计算等方法逐一分析各个选项并判断即可作答.【详解】对于A,若,取,而,即,,不成等差数列,A不正确;对于B,若,则,即,,成等比数列,B正确;对于C,若,取,而,,,不成等差数列,C不正确;对于D,a,b,c是实数,若,显然都可以为负数或者0,此时a,b,c无对数,D不正确.故选:B11、C【解析】利用简易逻辑的知识逐一判断即可.【详解】,故A正确;菱形的四边相等,但不一定是正方形,故B正确;“存在实数,使”的否定是“对任意的实数都有”,故C错误;假设且,则,与矛盾,故D正确;故选:C12、B【解析】根据椭圆中的关系即可求解.【详解】椭圆的长轴长为10,焦距为8,所以,,可得,,所以,可得,所以该椭圆的短轴长,故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、若,则【解析】否命题是对命题的条件和结论同时否定,同时否定和即可.命题“若,则”的否命题为:若,则考点:四种命题.14、17【解析】根据双曲线的定义求解【详解】由双曲线方程知,,,又.,所以(1舍去)故答案为:1715、【解析】根据给定条件求出,构造新数列并借助单调性求解作答.【详解】在数列中,,当,时,,则有,而满足上式,因此,,,显然数列是递增数列,且,,又对任意恒成立,则,所以实数的取值范围为.故答案为:【点睛】思路点睛:给定数列的前项和或者前项积,求通项时,先要按和分段求,然后看时是否满足时的表达式,若不满足,就必须分段表达.16、【解析】由椭圆方程和圆的方程可确定椭圆焦点、圆心和半径;当最小时,可知,此时;根据椭圆性质知,解方程可求得,进而得到离心率.【详解】由椭圆方程知其右焦点为;由圆的方程知:圆心为,半径为;当最小时,则最小,即,此时最小;此时,;为椭圆右顶点时,,解得:,椭圆的离心率.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)2;(2)存在,.【解析】(1)对函数求导,利用得的值;(2)讨论和分离参数,构造新函数求解最值即可求解【详解】解:(1),又由题意有(2)由(1)知,此时,由或,所以函数的单调减区间为和要恒成立,即①当时,,则要恒成立,令,再令,所以在内递减,所以当时,,故,所以在内递增,;②当时,lnx>0,则要恒成立,由①可知,当时,,所以内递增,所以当时,,故,所以在内递增,综合①②可得,即存在常数满足题意18、(1)(2)回归直线方程是理想的【解析】(1)根据表格数据求得,利用最小二乘法可求得回归直线方程;(2)令回归直线中的可求得估计数据,对比检验数据即可确定结论.小问1详解】由表格数据可知:,,,则,关于的回归直线方程为;【小问2详解】令回归直线中的,则,,(1)中所得到的回归直线方程是理想的.19、(1)答案不唯一,具体见解析(2)【解析】(1)求导得,在分,两种情况讨论求解即可;(2)根据题意将问题转化为对恒成立,进而构造函数,求解函数最值即可.【小问1详解】解:函数的定义域为,当时,令,得,令,得;当时,令,得,令,得综上,当时,在上单调递减,在上单调递增;当时,在上单调递增,在上单调递减【小问2详解】解:由(1)知,函数在上单调递增,则,所以对恒成立等价于对恒成立设函数,则,设,则,则在上单调递减,所以,则,所以在上单调递减,所以;故,即的取值范围是20、(1)(2)【解析】(1)通过正弦定理将边化为角的关系,可得,进而可得结果;(2)由面积公式得,结合余弦定理得,进而得结果.【小问1详解】∵∴由正弦定理,得∴∵,∴,故【小问2详解】由(1)知,∵∴∵由余弦定理知,∴,故∴,故∴的周长为21、(1)(2)【解析】(1)由条件可得,解出即可;(2)设,,取AB的中点,联立直线与椭圆的方程消元,算
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 北师大的数学试卷
- 湖南汽车工程职业学院《图像与视觉实验》2023-2024学年第二学期期末试卷
- 认识压强听评课记录表
- 盐城博物馆施工方案
- 实验设计全解析
- 小学公开课听评课记录
- 创建“绿色医院”实施方案范文(二篇)
- 初一零分数学试卷
- 中小学教学质量监测评价方案
- 2022年新课标七年级上册道德与法治《第十课绽放生命之花2课时》听课评课记录
- 2022年试行林木采伐管理方案
- 灌肠操作评分标准
- 企业年金基金管理机构基本服务和收费标准规范规范行业自律公约
- 小学二年级部编人教版上册语文期末整理复习题
- 东华医院麻醉科QoR-40随访表
- DB5106∕T 16-2021 机插水稻育秧基质制备技术规程
- 堤坝工程施工组织设计
- 常用钢材化学成分及力学性能
- CPIM BSCM__v3_0_VC(课堂PPT)
- 雀巢面试的开放性问题
- 会议审批表模板
评论
0/150
提交评论