版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第3课平面向量的加法运算目标导航目标导航课程标准课标解读1.借助实例和平面向量的几何表示,理解相反向量的含义、向量减法的意义及减法法则.2.掌握向量减法的几何意义.3.能熟练地进行向量的加、减综合运算.1、通过阅读课本在向量加法的基础上,理解向量减法与数量减法的异同,并学会有加法理解减法的运算与意义,提升数学运算能力.2、熟练运用掌握向量加法的三角形法则和平行四边形法则,并能熟练地运用这两个法则在减法运算的题目中灵活的作两个向量的加法与减法两种运算.3、在认真学习的基础上,深刻掌握两个或者多个相连接加法,减法的交换律和结合律,并能作图解释向量加法与减法的运算律的合理性,把运算律的应用范围进行拓广.知识精讲知识精讲知识点01相反向量1.定义:与向量a长度相等,方向相反的向量,叫做a的相反向量,记作-a.2.性质(1)零向量的相反向量仍是零向量.(2)对于相反向量有:a+(-a)=(-a)+a=0.(3)若a,b互为相反向量,则a=-b,b=-a,a+b=0.【即学即练1】如图,已知向量a,b,c不共线,求作向量a+b-c.解析方法一如图①,在平面内任取一点O,作eq\o(OA,\s\up6(→))=a,eq\o(AB,\s\up6(→))=b,则eq\o(OB,\s\up6(→))=a+b,再作eq\o(OC,\s\up6(→))=c,则eq\o(CB,\s\up6(→))=a+b-c.方法二如图②,在平面内任取一点O,作eq\o(OA,\s\up6(→))=a,eq\o(AB,\s\up6(→))=b,则eq\o(OB,\s\up6(→))=a+b,再作eq\o(CB,\s\up6(→))=c,连接OC,则eq\o(OC,\s\up6(→))=a+b-c.反思感悟求作两个向量的差向量的两种思路(1)可以转化为向量的加法来进行,如a-b,可以先作-b,然后作a+(-b)即可.(2)可以直接用向量减法的三角形法则,即把两向量的起点重合,则差向量为连接两个向量的终点,指向被减向量的终点的向量.知识点02向量的减法1.定义:向量a加上b的相反向量,叫做a与b的差,即a-b=a+(-b),因此减去一个向量,相当于加上这个向量的相反向量,求两个向量差的运算,叫做向量的减法.2.减法法则:已知向量a,b,在平面内任取一点O,作eq\o(OA,\s\up6(→))=a,eq\o(OB,\s\up6(→))=b,则向量a-b=eq\o(BA,\s\up6(→)),如图所示.3.几何意义:如果把两个向量的起点放在一起,那么这两个向量的差是以减向量的终点为起点,被减向量的终点为终点的向量.【即学即练2】(1)[多选]下列各向量运算的结果与eq\o(AC,\s\up6(→))相等的有()A.eq\o(AO,\s\up6(→))+eq\o(OC,\s\up6(→)) B.eq\o(AO,\s\up6(→))-eq\o(OC,\s\up6(→))C.eq\o(OA,\s\up6(→))-eq\o(OC,\s\up6(→)) D.eq\o(OC,\s\up6(→))-eq\o(OA,\s\up6(→))答案AD(2)化简下列各式:①eq\o(OM,\s\up6(→))-eq\o(ON,\s\up6(→))+eq\o(MP,\s\up6(→))-eq\o(NA,\s\up6(→));②(eq\o(AD,\s\up6(→))-eq\o(BM,\s\up6(→)))+(eq\o(BC,\s\up6(→))-eq\o(MC,\s\up6(→))).解析①eq\o(OM,\s\up6(→))-eq\o(ON,\s\up6(→))+eq\o(MP,\s\up6(→))-eq\o(NA,\s\up6(→))=eq\o(NM,\s\up6(→))+eq\o(MP,\s\up6(→))-eq\o(NA,\s\up6(→))=eq\o(NP,\s\up6(→))-eq\o(NA,\s\up6(→))=eq\o(AP,\s\up6(→)).②(eq\o(AD,\s\up6(→))-eq\o(BM,\s\up6(→)))+(eq\o(BC,\s\up6(→))-eq\o(MC,\s\up6(→)))=eq\o(AD,\s\up6(→))+eq\o(MB,\s\up6(→))+eq\o(BC,\s\up6(→))+eq\o(CM,\s\up6(→))=eq\o(AD,\s\up6(→))+(eq\o(MB,\s\up6(→))+eq\o(BC,\s\up6(→))+eq\o(CM,\s\up6(→)))=eq\o(AD,\s\up6(→))+0=eq\o(AD,\s\up6(→)).知识点03用已知向量表示其他向量【即学即练3】如图,在五边形ABCDE中,若四边形ACDE是平行四边形,且eq\o(AB,\s\up6(→))=a,eq\o(AC,\s\up6(→))=b,eq\o(AE,\s\up6(→))=c,试用a,b,c表示向量eq\o(BD,\s\up6(→)),eq\o(BC,\s\up6(→)),eq\o(BE,\s\up6(→)),eq\o(CD,\s\up6(→))及eq\o(CE,\s\up6(→)).答案答案见解析.解析∵四边形ACDE是平行四边形,∴eq\o(CD,\s\up6(→))=eq\o(AE,\s\up6(→))=c,eq\o(BC,\s\up6(→))=eq\o(AC,\s\up6(→))-eq\o(AB,\s\up6(→))=b-a,eq\o(BE,\s\up6(→))=eq\o(AE,\s\up6(→))-eq\o(AB,\s\up6(→))=c-a,eq\o(CE,\s\up6(→))=eq\o(AE,\s\up6(→))-eq\o(AC,\s\up6(→))=c-b,∴eq\o(BD,\s\up6(→))=eq\o(BC,\s\up6(→))+eq\o(CD,\s\up6(→))=b-a+c.反思感悟用已知向量表示其他向量的步骤(1)解决此类问题要搞清楚图形中的相等向量、相反向量、共线向量以及构成三角形的三个向量之间的关系,确定已知向量与被表示向量的转化渠道.(2)主要应用向量加法、减法的几何意义以及向量加法的结合律、交换律来分析解决问题,在封闭图形中可利用向量加法的多边形法则,提升逻辑推理素养.能力拓展能力拓展考法01向量减法法则【典例1】1.在平行四边形SKIPIF1<0中,SKIPIF1<0为SKIPIF1<0上任一点,则SKIPIF1<0等于(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0答案B详解SKIPIF1<0SKIPIF1<0SKIPIF1<0故选:SKIPIF1<0.【变式训练】已知非零向量SKIPIF1<0,SKIPIF1<0满足SKIPIF1<0,则SKIPIF1<0_________.答案SKIPIF1<0详解如图,设SKIPIF1<0,SKIPIF1<0,则SKIPIF1<0,以OA,OB为边作平行四边形OACB,则SKIPIF1<0.因为SKIPIF1<0,所以△OAB是等边三角形,四边形OACB是一个菱形,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.故答案为:SKIPIF1<0.考法02向量减法的运算律【典例2】化简SKIPIF1<0______.答案SKIPIF1<0详解SKIPIF1<0.故答案为:SKIPIF1<0反思感悟(1)向量减法运算的常用方法(2)向量加减法化简的两种形式①首尾相连且为和.②起点相同且为差.解题时要注意观察是否有这两种形式,同时注意逆向应用.【变式训练】1.(多选)下列能化简为SKIPIF1<0的是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0答案ABC详解A选项,SKIPIF1<0,A选项正确.B选项,SKIPIF1<0,B选项正确.C选项,SKIPIF1<0,C选项正确.D选项,SKIPIF1<0,D选项错误.故选:ABC2.空间任意四点A、B、C、D,则SKIPIF1<0________.答案SKIPIF1<0详解SKIPIF1<0.故答案为:SKIPIF1<0.考法03向量减法的几何意义与应用【典例3】如图所示,四边形ACDE是平行四边形,点B是平行四边形ACDE内一点,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,试用向量SKIPIF1<0表示向量SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.答案SKIPIF1<0,SKIPIF1<0,SKIPIF1<0详解解:因为四边形ACDE是平行四边形,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.【变式训练】1.如图所示,单位圆上有动点A,B,当SKIPIF1<0取得最大值时,SKIPIF1<0等于(
)A.0 B.SKIPIF1<0 C.1 D.2答案D详解因为SKIPIF1<0,A,B是单位圆上的动点,所以SKIPIF1<0的最大值为2,此时SKIPIF1<0与SKIPIF1<0反向.故选:D.2.如图,等腰梯形ABCD中,SKIPIF1<0,点E为线段CD中点,点F为线段BC的中点,则SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0答案B详解连接SKIPIF1<0,SKIPIF1<0,点SKIPIF1<0为线段SKIPIF1<0中点,点SKIPIF1<0为线段SKIPIF1<0的中点,SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0.故选:B.分层提分分层提分题组A基础过关练1.在SKIPIF1<0中,点D在BC边上,且SKIPIF1<0.设SKIPIF1<0,则SKIPIF1<0可用基底SKIPIF1<0表示为(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0答案C详解解析:因为SKIPIF1<0,所以SKIPIF1<0.所以SKIPIF1<0.故选:C2.在SKIPIF1<0中,已知SKIPIF1<0是SKIPIF1<0边上一点,且SKIPIF1<0,则(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0答案C详解解:SKIPIF1<0,则有SKIPIF1<0,可得SKIPIF1<0.故选:C.3.下列化简结果错误的是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0答案D详解对A,原式SKIPIF1<0,正确;对B,原式SKIPIF1<0,正确;对C,原式SKIPIF1<0,正确;对D,原式SKIPIF1<0,错误.故选:D.4.下列说法错误的是(
)A.若SKIPIF1<0为平行四边形,则SKIPIF1<0B.若SKIPIF1<0则SKIPIF1<0C.互为相反向量的两个向量模相等D.SKIPIF1<0答案B详解对于A,SKIPIF1<0中,SKIPIF1<0,且向量SKIPIF1<0与SKIPIF1<0同向,则SKIPIF1<0,A正确;对于B,当SKIPIF1<0时,SKIPIF1<0与SKIPIF1<0不共线,也满足SKIPIF1<0,B不正确;对于C,由互为相反向量的定义知,互为相反向量的两个向量模相等,C正确;对于D,SKIPIF1<0,D正确.故选:B5.SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0答案A详解由向量的运算法则,可得SKIPIF1<0SKIPIF1<0.故选:A.6.在四边形ABCD中,给出下列四个结论,其中一定正确的是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0答案D详解根据三角形法则可得SKIPIF1<0,所以A错误;根据向量减法的运算法则可得SKIPIF1<0,所以B错误;四边形ABCD不一定是平行四边形,所以不一定有SKIPIF1<0,C错误;根据三角形法则可得SKIPIF1<0正确,所以D正确.故选:D.7.(多选)化简以下各式,结果为SKIPIF1<0的有(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0答案ABC详解对于A,SKIPIF1<0SKIPIF1<0,故A正确;对于B,SKIPIF1<0SKIPIF1<0SKIPIF1<0,故B正确;对于C,SKIPIF1<0SKIPIF1<0SKIPIF1<0,故C正确;对于D,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,故D不正确.故选:ABC.8.(多选)给出下面四个结论,其中正确的结论是(
)A.若线段SKIPIF1<0,则向量SKIPIF1<0B.若向量SKIPIF1<0,则线段SKIPIF1<0C.若向量SKIPIF1<0与SKIPIF1<0共线,则线段SKIPIF1<0D.若向量SKIPIF1<0与SKIPIF1<0反向共线,则SKIPIF1<0答案AD详解选项A:由SKIPIF1<0得点B在线段SKIPIF1<0上,则SKIPIF1<0,A正确:选项B;三角形SKIPIF1<0,SKIPIF1<0,但SKIPIF1<0,B错误;对于C:SKIPIF1<0,SKIPIF1<0反向共线时,SKIPIF1<0,故SKIPIF1<0,C错误;选项D:SKIPIF1<0,SKIPIF1<0反向共线时,SKIPIF1<0,故D正确.故选:AD.9.已知非零向量SKIPIF1<0,SKIPIF1<0满足SKIPIF1<0,则SKIPIF1<0_________.答案SKIPIF1<0详解如图,设SKIPIF1<0,SKIPIF1<0,则SKIPIF1<0,以OA,OB为边作平行四边形OACB,则SKIPIF1<0.因为SKIPIF1<0,所以△OAB是等边三角形,四边形OACB是一个菱形,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.故答案为:SKIPIF1<0.10.已知SKIPIF1<0为正三角形,则下列各式中成立的是___________.(填序号)①SKIPIF1<0;②SKIPIF1<0;③SKIPIF1<0;④SKIPIF1<0.答案①②③详解对于①,SKIPIF1<0,故①成立;对于②,设SKIPIF1<0分别为SKIPIF1<0的中点,则SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,故②成立;对于③,SKIPIF1<0,所以SKIPIF1<0,故③正确;对于④,SKIPIF1<0,故④不成立.故答案为:①②③.11.如图所示,四边形SKIPIF1<0是平行四边形,SKIPIF1<0是该平行四边形外一点,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,试用向量SKIPIF1<0、SKIPIF1<0、SKIPIF1<0表示向量SKIPIF1<0与SKIPIF1<0.答案SKIPIF1<0,SKIPIF1<0详解解:由平面向量的减法可得SKIPIF1<0,SKIPIF1<0.12.已知点SKIPIF1<0是平行四边形SKIPIF1<0内一点,且SKIPIF1<0=SKIPIF1<0,SKIPIF1<0=SKIPIF1<0,SKIPIF1<0=SKIPIF1<0,试用SKIPIF1<0表示向量SKIPIF1<0、SKIPIF1<0、SKIPIF1<0、SKIPIF1<0及SKIPIF1<0.答案答案见解析.详解∵四边形SKIPIF1<0为平行四边形.∴SKIPIF1<0=SKIPIF1<0=SKIPIF1<0;SKIPIF1<0=SKIPIF1<0-SKIPIF1<0=SKIPIF1<0;SKIPIF1<0=SKIPIF1<0-SKIPIF1<0=SKIPIF1<0;SKIPIF1<0=SKIPIF1<0-SKIPIF1<0=SKIPIF1<0;SKIPIF1<0=SKIPIF1<0+SKIPIF1<0=SKIPIF1<0.题组B能力提升练1.在平行四边形ABCD中,SKIPIF1<0=SKIPIF1<0SKIPIF1<0,SKIPIF1<0=SKIPIF1<0SKIPIF1<0,则SKIPIF1<0=(
)A.SKIPIF1<0 B.-SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0答案B详解如图,由题可知SKIPIF1<0,SKIPIF1<0是SKIPIF1<0中点,SKIPIF1<0是SKIPIF1<0三等分点,所以,SKIPIF1<0故选:B.2.如图,已知SKIPIF1<0中,SKIPIF1<0为SKIPIF1<0的中点,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0交于点SKIPIF1<0,设SKIPIF1<0,SKIPIF1<0.若SKIPIF1<0,则实数SKIPIF1<0的值为(
)A.0.6 B.0.8 C.0.4 D.0.5答案D详解因为D为BC的中点,且SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0,即SKIPIF1<0,又AE=SKIPIF1<0EC,可得SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,故SKIPIF1<0,因为SKIPIF1<0,SKIPIF1<0共线,由平面向量的基本定理可知满足SKIPIF1<0,解得SKIPIF1<0,故选:D.3.(多选)如图,在平行四边形SKIPIF1<0中,下列计算错误的是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0答案BC详解根据向量加法的平行四边形法则和向量加法的几何意义,SKIPIF1<0,SKIPIF1<0A正确;SKIPIF1<0,SKIPIF1<0B错误;SKIPIF1<0,SKIPIF1<0C错误;SKIPIF1<0,SKIPIF1<0D正确.故选:BC4.(多选)在平行四边形SKIPIF1<0中,下列结论中错误的是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0答案CD详解解:对于A选项,SKIPIF1<0,故A选项正确;对于B选项,根据平行四边形法则,SKIPIF1<0,故B选项正确;对于C选项,SKIPIF1<0,故C选项错误;对于D选项,SKIPIF1<0,故D选项错误.故选:CD5.已知非零向量SKIPIF1<0满足SKIPIF1<0,SKIPIF1<0,则SKIPIF1<0的最大值为___________.答案SKIPIF1<0##SKIPIF1<0详解设SKIPIF1<0,如图,则SKIPIF1<0,SKIPIF1<0是SKIPIF1<0的重心.由于SKIPIF1<0,延长SKIPIF1<0交SKIPIF1<0于点SKIPIF1<0,则SKIPIF1<0,SKIPIF1<0.设SKIPIF1<0,则SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,当SKIPIF1<0时,等号成立,即SKIPIF1<0的最大值为SKIPIF1<0.故答案为:SKIPIF1<06.如图所示,中心为O的正八边形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,则SKIPIF1<0______.(结果用SKIPIF1<0,SKIPIF1<0表示)答案SKIPIF1<0详解由题图可知,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,故答案为:SKIPIF1<07.在平面直角坐标系SKIPIF1<0中,点SKIPIF1<0,点SKIPIF1<0在圆SKIPIF1<0上,则SKIPIF1<0的最大值为________________.答案SKIPIF1<0##SKIPIF1<0详解解:SKIPIF1<0点SKIPIF1<0在圆SKIPIF1<0上,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0的最大值为SKIPIF1<0.故答案为:SKIPIF1<0.8.在三角形ABC中,若SKIPIF1<0,且SKIPIF1<0,则SKIPIF1<0_______答案1详解SKIPIF1<0SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0故答案为:1.9.已知SKIPIF1<0的对角线AC和BD相交于点O,且SKIPIF1<0,SKIPIF1<0,则SKIPIF1<0=________,SKIPIF1<0=________.(用SKIPIF1<0表示)答案
SKIPIF1<0
SKIPIF1<0详解如图所示:SKIPIF1<0,SKIPIF1<0.故答案为:SKIPIF1<0;SKIPIF1<0.10.如图所示,已知在平行四边形ABCD中,E,F分别是BC,DC边上的中点.若SKIPIF1<0,SKIPIF1<0,试以SKIPIF1<0为基底表示SKIPIF1<0,SKIPIF1<0.答案SKIPIF1<0;SKIPIF1<0.详解在平行四边形ABCD中,E,F分别是BC,DC边上的中点,则SKIPIF1<0,所以:SKIPIF1<0,SKIPIF1<0.题组C培优拔尖练1.已知正六边形SKIPIF1<0中,SKIPIF1<0是SKIPIF1<0的中点,则SKIPIF1<0A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0答案C详解作出图形如下图所示,设直线SKIPIF1<0、SKIPIF1<0相交于点SKIPIF1<0,则点SKIPIF1<0为这两条线段的中点,由图形可知,SKIPIF1<0,所以,SKIPIF1<0,①SKIPIF1<0,②SKIPIF1<0,③联立②③,得SKIPIF1<0,解得SKIPIF1<0,代入①,得SKIPIF1<0,故选C.2.如图,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,则SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0答案B详解SKIPIF1<0SKIPIF1<0SKIPIF1<0故选:B3.
八卦是中国文化中的哲学概念,如图1是八卦模型图,其平面图形记为图2中的正八边形ABCDEFGH,其中SKIPIF1<0,则给出下列结论:①SKIPIF1<0;②SKIPIF1<0;③SKIPIF1<0.其中正确的结论为(
)A.①② B.①③ C.②③ D.①②③答案C详解对于①:因为SKIPIF1<0,故①错误;对于②:因为SKIPIF1<0,则以SKIPIF1<0为邻边的平行四边形为正方形,又因为SKIPIF1<0平分SKIPIF1<0,所以SKIPIF1<0,故②正确;对于③:因为SKIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0,故③正确,故选:C.4.(多选)已知SKIPIF1<0是平面内两两不相等的向量,满足SKIPIF1<0,且SKIPIF1<0(其中SKIPIF1<0),则实数k的值可能为(
)A.2 B.4 C.6 D.8答案ABC详解依题意,不妨令SKIPIF1<0,SKIPIF1<0,因SKIPIF1<0,即SKIPIF1<0,又SKIPIF1<0,则以SKIPIF1<0的终点SKIPIF1<0为圆心,作半径SKIPIF1<0和SKIPIF1<0的圆,两圆的公共点SKIPIF1<0即为满足题意的SKIPIF1<0,如图,分别以点SKIPIF1<0为圆心,半径均为SKIPIF1<0的圆有两个公共点SKIPIF1<0,半径均为SKIPIF1<0的圆有两个公共点SKIPIF1<0,以SKIPIF1<0为圆心,SKIPIF1<0为半径的圆与以SKIPIF1<0为圆心,SKIPIF1<0为半径的圆有一个公共点SKIPIF1<0,以SKIPIF1<0为圆心,SKIPIF1<0为半径的圆与以SKIPIF1<0为圆心,SKIPIF1<0为半径的圆有一个公共点SKIPIF1<0,因此,符合条件的公共点SKIPIF1<0最多6个,满足题意的SKIPIF1<0最多6个,即SKIPIF1<0的最大值为6.故选:ABC5.已知点SKIPIF1<0是SKIPIF1<0的重心,点SKIPIF1<0在边SKIPIF1<0上,SKIPIF1<0(1)用SKIPIF1<0和SKIPIF1<0表示SKIPIF1<0;(2)用SKIPIF1<0和SKIPIF1<0表示SKIPIF1<0.答案(1)SKIPIF1<0
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【KS5U原创】新课标2021年高二暑假化学作业(八)
- 【创新设计】(人教)2020-2021高中化学选修五【分层训练】4-3-蛋白质和核酸
- 【创新设计】2020-2021学年高中物理人教版选修3-1练习:1.10-电容器的电容
- 【名师一号】2020-2021学年高中地理人教版必修三-双基限时练7
- 【2021春走向高考】2022届高三历史(岳麓版)一轮复习:阶段性测试题10
- 保定市2022高考英语阅读理解选练(1)答案
- 2021广东韶关市高考英语自选练习(3)及答案
- 《结直肠癌教学》课件
- 【学练考】2021-2022学年高一历史岳麓版必修1练习册:单元测评一-
- 【名师一号】2020-2021学年高中数学人教B版必修2双基限时练9(第一章)
- GB/T 26527-2024有机硅消泡剂
- 形象与礼仪智慧树知到期末考试答案2024年
- 化工建设综合项目审批作业流程图
- TSGD-(压力管道安装许可规则)
- 颈椎病的分型和治课件
- 国家开放大学Matlab语言及其应用期末考试复习资料汇编
- 中医五脏课件
- 安谷铁龙煤矿整合技改施工组织设计样本
- 《新概念英语第二册》电子书、单词、笔记、练习册(附答案)汇编
- 2023年云南大学滇池学院招聘考试真题
- 品质助理述职报告
评论
0/150
提交评论