数字图像处置阈值分割_第1页
数字图像处置阈值分割_第2页
数字图像处置阈值分割_第3页
数字图像处置阈值分割_第4页
数字图像处置阈值分割_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

计算机科学与通信工程学院实验报告课程图像解决实验题目图像分割

图像分割是一种重要的图像分析技术。在对图像的研究和应用中,人们往往只对图像中的特定某一部分感爱好,他们普通对应着图像中某些特定的区域。为了识别它们,能够把他们从图像中分离提取出来。典型的图像分割办法能够分为基于阈值的办法、基于边沿的办法和基于区域的分割办法。灰度阈值法将图片灰度划分为不同等级,用设立灰度阈值的办法拟定故意义的区域。它是一种最惯用的并行区域技术,它是图像分割中应用数量最多的一类。阈值分割办法事实上是输入图像f到输出图像g的以下变换:其中,T为阈值,对于物体的图像元素g(i,j)=1,对于背景的图像元素g(i,j)=0。由此可见,阈值分割算法的核心是拟定阈值,如果能拟定一种适宜的阈值就可精确地将图像分割开来。阈值拟定后,将阈值与像素点的灰度值逐个进行比较,并且像素分割可对各像素并行地进行,分割的成果直接给出图像区域。图像边沿是图像识别中抽取图像特性的重要属性。是由于相邻像素间灰度值激烈变化引发的。图像中边沿处像素的灰度值不持续,这种不持续性可通过求导数来检测到。对于阶跃状边沿,其位置对应一阶导数的极值点,对应二阶导数的过零点(零交叉点)。因此惯用微分算子进行边沿检测。惯用的一阶微分算子有Roberts算子、Prewitt算子和Sobel算子,二阶微分算子有Laplace算子和Kirsh算子等。在实际中多个微分算子惯用社区域模板来表达,微分运算是运用模板和图像卷积来实现。这些算子对噪声敏感,只适合于噪声较小不太复杂的图像。水域分割是借鉴了形态学理论的分割办法,其本质是运用了图像的区域特性进行分割图像。将边沿检测与区域生长的优点相结合。用全局阈值、OTSU及迭代法求阈值。成果如图2,3所示I=imread('');[width,height]=size(I);%otsualgorithmlevel=graythresh(I);BW=im2bw(I,level);figureimshow(BW)%globalthresholdfori=1:widthforj=1:heightif(I(i,j)<80)BW1(i,j)=0;elseBW1(i,j)=1;endendendfigureimshow(BW1)%迭代求阈值I=double(I);T=(min(I(:))+max(I(:)))/2;done=false;i=0;while~doner1=find(I<=T);r2=find(I>T);Tnew=(mean(I(r1))+mean(I(r2)))/2;done=abs(Tnew-T)<1;T=Tnew;i=i+1;endI(r1)=0;I(r2)=1;Figure;imshow(I)用分水岭算法分割图像:center1=-10;center2=-center1;dist=sqrt(2*(2*center1)^2);radius=(dist/2)*;lims=[floor*radius)ceil(center2+*radius)];[x,y]=meshgrid(lims(1):lims(2));bw1=sqrt((x-center1).^2+(y-center1).^2)<=radius;bw2=sqrt((x-center2).^2+(y-center2).^2)<=radius;bw=bw1|bw2;figure,imshow(bw,'InitialMagnification','fit'),title('二进制图像')D=bwdist(~bw);figure,imshow(D,[],'InitialMagnification','fit')title('距离变换')D=-D;D(~bw)=-Inf;L=watershed(D);rgb=label2rgb(L,'jet',[.5.5.5]);figure,imshow(rgb,'InitialMagnification','fit')title('分水岭办法')Sobel、Prewitt、Roberts等算子的边沿提取算法。a=imread('d:\');bw1=edge(a,'sobel');bw2=edge(a,'prewitt');bw3=edge(a,'roberts');bw4=edge(a,'log');figureimshow(a)figuresubplot(2,2,1)imshow(bw1)xlabel('soble')subplot(2,2,2)imshow(bw2)xlabel('prewitt')subplot(2,2,3)imshow(bw3)xlabel('roberts')subplot(2,2,4)imshow(bw4)xlabel('log')用形态学办法:BW1=imread('');figureimshow(BW1)SE=strel('arbitrary',eye(5));BW2=imerode(BW1,SE);figureimshow(BW2)BW3=imdilate(BW1,SE);figureimshow(BW3)BW4=imopen(BW1,SE);figure,imshow(BW4)BW4=imclose(BW1,SE);figure,imshow(BW4)图SEQ图\*ARABIC1图SEQ图\*ARABIC2图SEQ图\*ARABIC3图SEQ图\*ARABIC4用分水岭算法分割图像图SEQ图\*ARABIC5三种算子分割原图图SEQ图\*ARABIC6图SEQ图\*ARABIC7图SEQ图\*A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论